Yıl 2018, Cilt 15, Sayı 1, Sayfalar 107 - 114 2018-06-30

Bitkilerdeki Fitokrom Işık Algılayıcıları
Phytochrome Photoreceptors in Plants

Zeynel DALKILIÇ [1]

46 105

Canlılar ışığı algılar ve tepki verir. Işık fotosentez için enerji kaynağı sağlamasının yanında, bitkilere çevrelerindeki durum hakkında da bilgi verir. Bitkilerde diğer pigmentlere ek olarak kromofor ismi verilen ışığa duyarlı pigmentler de bulunur. Günümüzde bitkilerde keşfedilen ışık algılayıcılarının sayısı 16’ya ulaşmıştır. Bunlar arasında fitokromlar, kriptokromlar, fototropinler ve UVR8 sayılabilir. Bunlardan kırmızı (R) ve kırmızı ötesi (FR) ışığı algılayan fitokromlar hem ilk keşfedilenlerdir hem de bitki büyüme ve gelişmesinde etkilidir. Fitokromlar bitkilerde tohum dinlenmesi, çimlenmesi, fide büyümesi, çiçeklenme ve yaşlanma gibi safhalarda önemli rol oynarlar. Fitokromlar öncelikle Pr formunda oluşur. Biyolojik olarak aktif olmayan Pr, gündüz kırmızı ışığı absorbe ettikten sonra aktif olan Pfr’ye dönüşür. Gündüz birikerek yüksek seviyeye ulaşan Pfr formu, dönüşüm ve parçalanma yoluyla gece azalır. Pr/Pfr oranı, bitkinin fotoperiyodun uzunluğunu algılayabilmesini sağlar. Fitokromlar ışığa göre değişken olan Tip I ve ışığa karşı göreceli olarak kararlı olan Tip II şeklinde 2 grupta incelenebilir. Diğer bir görüşe göre fitokromlarda düşük ışık şiddetine tepki veren LFR formu, çok düşük ışık şiddetine tepki veren VLFR formu, yüksek ışık şiddetine tepki veren HIR formu ve kırmızı/kırmızı ötesi oranına tepki veren R/FR formu olarak 4 grup tepki modu bulunur. Bitki fitokromunun yapısının çözülmesi, fitokromların haberleşme mekanizmasının anlaşılmasını sağlayabilecektir. Daha ekonomik, yüksek çıktılı yeni generasyon baz dizileme teknolojileri, ChIP-seq ve RNA-seq yöntemlerinin kullanımı yoluyla fitokromun genom seviyesinde tanımlanmasına yardım edebilecektir.

Organisms sense and respond to light. Besides light provides energy for photosynthesis, it does also give plants information about their environment. In addition to other pigments in plants, chromophores which are sensitive to light exist. Nowadays discovered photoreceptors reached at 16 in plants. Of these phytochromes, cryptochromes, phototropins, and UVR8 can be mentioned. Among others phytochromes, sense both red (R) and far-red (FR) light, are discovered first and effective in plant growth and development. Phytochromes play important roles in seed dormancy, germination, seedling growth, flowering, and maturity or senescence phases in plants. Phytochromes firstly occur in Pr form. Pr, which is not biologically active, after it absorbs red light during day time, Pr form is converted to Pfr form, which is biologically active. Pfr form reaches high level via accumulation during the day, its level decreases through conversion and disintegration during the night. Pr/Pfr ratio provides photoperiod lenght perception in plants. Phytochromes can be investigated in two groups such as Type I (labile to light) and Type II (stabile to light). According to another view, phytochromes contain four modes of action namely, LFR (low fluence response), VLFR (very low fluence response), HIR (high irradiance response), and R/FR (red/far-red ratio). Unraveling the molecular structures of plant phytochromes might provide to understand communication mechanism of the phytochromes. Using cheaper and high-throughput next nucleotide sequencing technologies, ChIP-seq, and RNA-seq methods might help to description of phytochromes in genomic level.

  • Ahmad M, Cashmore AR (1993) HY4 gene of A.thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366: 162-166.
  • Aphalo PJ (2006) Light signals and the growth and development of plants-a gentle introduction. The Plant Photobiology Notes 1. Univ. Helsinki, Finland, 39 p.
  • Auldridge ME, Forest KT (2011) Bacterial phytochromes: more than meets the light. Crit. Rev. Biochem. Mol. Biol. 46: 67-88.
  • Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK (1952) A reversible photoreaction controlling seed germination. PNAS 38: 662-666.
  • Botto JF, Sánchez RA, Whitelam GC, Casal JJ (1996) Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade light in Arabidopsis. Plant Physiol. 110: 439-444.
  • Briggs WR (2014) Photoropism: some history, some puzzles, and a look ahead. Plant Physiol. 164: 13-23.
  • Burgie ES, Bussell AN, Walker JM, Dubiel K, Vierstra RD (2014) Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. PNAS 111: 10179-10184.
  • Butler WL, Norris KH, Siegelman HW, Hendricks SB (1959) Detection, assay, and preliminary purification of the pigment controlling photosynthesis development of plants. PNAS 45: 1703-1708.
  • Cashmore AR (1997) The cryptochrome family of photoreceptors. Plant Cell Environ. 20: 764-767.
  • Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62: 335-364.
  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu. Rev. Genet. 38: 87-117.
  • Chory J (2010) Light signal transduction: an infinite spectrum of posibilities. Plant J. 61: 982-991.
  • Christie JM, Blackwood L, Petersen J, Sullivan S (2015) Plant flavoprotein photoreceptors. Plant Cell Physiol. 56: 401-413.
  • Deng XW, Quail PH (1999) Signalling in light-controlled development. Cell Dev. Biol. 10: 121-129.
  • Fankhauser C, Batschauer A (2016) Shadow on the plant: A strategy to exit. Cell 164: 15-17.
  • Franklin KA (2008) Shade avoidance. New Phytol. 179: 930-944.
  • Franklin KA, Quail PH (2010) Phytochrome functions in Arabidopsis development. J. Exp. Bot. 61: 11-24.
  • Galvão VC, Fankhauser C (2015) Sensing the light environment in plants: photoreceptors and early signaling steps. Curr. Opin. Neurobiol. 34: 46-53.
  • Gil P, Kircher S, Adam E, Bury E, Kozma-Bognar L, Schäfer E, Nagy F (2000) Photocontrol of subcellular partitioning of phytochrome-B: GFP fusion protein in tobacco seedlings. Plant J. 22: 135-145.
  • Han Y-J, Song P-S, Kim J-I (2007) Phytochrome-mediated photomorphogenesis in plants. J. Plant Biol. 50: 230-240.
  • Hennig L, Stoddart WM, Dieterle M, Whitelam GC, Schäfer E (2002) Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol. 128: 194-200.
  • Hershey HP, Colbert JT, Lissemore JL, Barker RF, Quail PH (1984) Molecular cloning of cDNA for Avena phytochrome. PNAS 81: 2332-2336.
  • Higa T, Suetsugu N, Kong SG, Wada M (2014) Actin-dependent plastid movement is required for motive force generation in directional nuclear movement in plants. PNAS 111: 4327-4331.
  • Hiltbrunner A, Viczian A, Bury E, Tscheuschler A, Kircher S, Toth R, Honsberger A, Nagy F, Fankhauser C, Schäfer E (2005) Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr. Biol. 15: 2125-2130.
  • Ito S, Song YH, Imaizumi T (2012) LOV-domain containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol. Plant 5: 573-582.
  • Jenkins GI (2014) The UV-B photoreceptor UVB8: from structure to physiology. Plant Cell 26: 21-37.
  • Jiao YL, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics 8: 217-230
  • Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and development. Curr. Top. Dev. Biol. 91: 29-66.
  • Keeton WT, Gould JL (2000) Genel Biyoloji. Cilt: 2, s: 938-940. 5.Baskı. Çev. Ed.: A. Demirsoy, İ. Türkan, E. Gündüz. Palme Yay. Ankara.
  • Kevei E, Schäfer E, Nagy F (2007) Light-regulated nucleo-cytoplasmic partitioning of phytochromes. J. Exp. Bot. 58: 3113-3124.
  • Kianianmomeni A, Hallmann A (2014) Algal photoreceptors: in vivo functions and potential applications. Planta 239: 1-26.
  • Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K, Schäfer E, Nagy F (1999) Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11: 1445-1456.
  • Kong S-G, Okajima K (2016) Diverse photoreceptors and light responses in plants. J. Plant Res. 129: 111-114.
  • Li J, Li G, Wang H, Deng XW (2011) Phytochrome signalling mechanisms. The Arabidopsis Book 9: e0148.
  • Li F-W, Melkonian M, Rothfels CJ, Villareal JC, Stevenson DW, Graham SW, Wong GK-S, Pryer KM, Mathews S (2015) Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nature Commun. 6: 7852.
  • Litts JC, Kelly JM, Lagarias JC (1983) Structure-function studies on phytochrome: preliminary characterization of highly purified phytochrome from Avena sativa enriched in the 124-kilodalton species. J. Biol. Chem. 258: 11025-11031.
  • Nagatani A (2004) Light-regulated nuclear localization of phytochromes. Curr. Opin. Plant Biol. 7: 708-711.
  • Nagy F, Schäfer E (2002) Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu. Rev. Plant Biol. 53: 329-355.
  • Nozue K, Kanegae T, Imaizumi T, Fukuda S, Okamoto H, Yeh K-C, Lagarias C, Wada M (1998) A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. PNAS 95: 15826-15830.
  • Quail PH (1997) An emerging molecular map of the phytochromes. Plant Cell Environ. 20: 657-665.
  • Quail PH (2010) Pytochromes. Curr. Biol. 20: R504-R507.
  • Reed JW, Nagatani A, Elich TD, Fagan M, Chory J (1994) Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol. 104: 1139-1149.
  • Rensing SA, Sheerin DJ, Hiltbrunner A (2016) Phytochromes: more than meets the eye. Trends Plant Sci. 21: 543-546.
  • Rockwell NC, Lagarias JC (2010) A brief history of phytochromes. Chem. Phys. Chem. 11: 1172-1180.
  • Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Ann. Rev. Microbiol. 64: 585-610.
  • Sakuraba Y, Jeong J, Kang M-Y, Kim J, Paek N-J, Choi G (2014) Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nature Commun. 5: 4636.
  • Schäfer E, Bowler C (2002) Phytochrome-mediated photoperception and signal transduction in higher plants. EMBO Reports 3: 1042-1048.
  • Sharrock RA (2008) The phytochrome red/far-red photoreceptor superfamily. Genome Biol. 9: 230.
  • Sharrock RA, Quail PH (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Devel. 3: 1745-1757.
  • Shikata H, Hanada K, Ushijima T, Nakashima M, Suzuki Y, Matsushita T (2014) Phytochrome controls alternative splicing to mediate light responses in Arabidopsis. PNAS 111: 18781-18786.
  • Shinomura T (1997) Phytochrome regulation of seed germination. J. Plant Res. 110: 151-181.
  • Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M (1996) Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. PNAS 93: 8129-8133.
  • Siegelman HW, Turner BC, Hendricks SB (1966) The chromophore of phytochrome. Plant Physiol. 41: 1289-1292.
  • Smith H (1995) Physiological and ecological function within the phytochrome family. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 289-315.
  • Suetsugu N, Wada M (2013) Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: phototropin, ZTL/FKF!/LKP2 and aureochrome. Plant Cell Physiol. 54: 8-23.
  • Taiz L, Zeiger E (2008) Bitki Fizyolojisi. 3.Baskı. Çev. Ed.: İ. Türkan. Palme Yay., Ankara, 690 S.
  • Vierstra RD, Quail PH (1983) Photochemistry of 124 kilodalton Avena phytochrome in vitro. Plant Physiol. 72: 264-267.
  • Wang H, Wang H (2015) Phyochrome signaling: time to tighten up the loose ends. Mol. Plant 8: 540-551.
  • Zhou Q, Hare PD, Yang SW, Zeidler M, Huang LF, Chua NH (2005) FHL is required for full phytochrome A signaling and shares overlapping functions with FHY1. Plant J. 43: 356-370.
Birincil Dil tr
Konular Mühendislik, Ziraat
Dergi Bölümü Derleme
Yazarlar

Orcid: 0000-0002-0946-1036
Yazar: Zeynel DALKILIÇ (Sorumlu Yazar)
Kurum: ADNAN MENDERES ÜNİVERSİTESİ
Ülke: Turkey


Bibtex @derleme { aduziraat329081, journal = {Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi}, issn = {1304-7787}, address = {Adnan Menderes Üniversitesi}, year = {2018}, volume = {15}, pages = {107 - 114}, doi = {10.25308/aduziraat.329081}, title = {Bitkilerdeki Fitokrom Işık Algılayıcıları}, key = {cite}, author = {DALKILIÇ, Zeynel} }
APA DALKILIÇ, Z . (2018). Bitkilerdeki Fitokrom Işık Algılayıcıları. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 15 (1), 107-114. DOI: 10.25308/aduziraat.329081
MLA DALKILIÇ, Z . "Bitkilerdeki Fitokrom Işık Algılayıcıları". Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 15 (2018): 107-114 <http://dergipark.gov.tr/aduziraat/issue/38785/329081>
Chicago DALKILIÇ, Z . "Bitkilerdeki Fitokrom Işık Algılayıcıları". Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 15 (2018): 107-114
RIS TY - JOUR T1 - Bitkilerdeki Fitokrom Işık Algılayıcıları AU - Zeynel DALKILIÇ Y1 - 2018 PY - 2018 N1 - doi: 10.25308/aduziraat.329081 DO - 10.25308/aduziraat.329081 T2 - Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi JF - Journal JO - JOR SP - 107 EP - 114 VL - 15 IS - 1 SN - 1304-7787- M3 - doi: 10.25308/aduziraat.329081 UR - http://dx.doi.org/10.25308/aduziraat.329081 Y2 - 2018 ER -
EndNote %0 Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi Bitkilerdeki Fitokrom Işık Algılayıcıları %A Zeynel DALKILIÇ %T Bitkilerdeki Fitokrom Işık Algılayıcıları %D 2018 %J Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi %P 1304-7787- %V 15 %N 1 %R doi: 10.25308/aduziraat.329081 %U 10.25308/aduziraat.329081
ISNAD DALKILIÇ, Zeynel . "Bitkilerdeki Fitokrom Işık Algılayıcıları". Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 15 / 1 (Haziran 2018): 107-114. http://dx.doi.org/10.25308/aduziraat.329081