Yıl 2017, Cilt 15, Sayı 4, Sayfalar 426 - 435 2017-12-24

Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler
Acetylcholinesterase Inhibition Based Biosensors Developed by Using Conducting Polymers for Pesticide Analyses

Songül Şen Gürsoy [1] , Oğuz Gürsoy [2]

159 203

Dünyada yaygın olarak kullanılan pestisitler, tarımsal, endüstriyel, evsel ve savaş malzemeleri olarak kullanılan kimyasallardır. Pestisitler pek çok sağlık sorunu ile ilgili olmasına rağmen, bu kirleticilerin izlenmesi ve tanımlanmasında ciddi bir eksiklik bulunmaktadır. Yüksek performanslı sıvı kromatografisi, kılcal elektroforez ve kütle spektrometresi gibi klasik kromatografik yöntemler gıdalardaki pestisit analizlerinde etkili yöntemlerdir. Bununla birlikte, bu yöntemlerin karmaşık süreçler, zaman alıcı hazırlık adımları, pahalı ekipman ve uzman personel gereksinimleri açısından önemli sınırlamaları vardır. Biyosensörler, basitlik, yüksek hassasiyet, kısa analiz süresi ve düşük analiz maliyeti ve aynı zamanda gerçek zamanlı ölçümlere uygulanabilirliği nedeniyle pestisitlerin tayini için tercih edilen cihazlardır. Onbeş yıldan fazla bir süredir, gıda kontrolü ve güvenliği için pestisit kalıntılarını izlemek için enzim inhibisyonuna dayalı biyosensörler geliştirilmiştir. İletken polimerler bu pestisit biyosensörlerinin yapımında yaygın olarak kullanılmaktadır. Bu çalışmada pestisit tayini için kullanılan biyosensörler ile ilgili bilgi verildikten sonra asetilkolin esteraz enziminin inhibisyonuna dayalı iletken polimer temelli biyosensörler ile ilgili çalışmalar derlenmiştir.

Pesticides commonly used worldwide are chemicals used as agricultural, industrial, domestic and war materials. Although pesticides are very strongly associated with many health problems, there is a serious lack of monitoring and identification of these pollutants. Conventional chromatographic methods such as high performance liquid chromatography, capillary electrophoresis and mass spectrometry are effective methods for pesticide analysis in foods. However, these methods have considerable limitations in terms of complex processes, time-consuming preparatory steps, expensive equipment and expert staff requirements. Biosensors are preferred devices for the determination of pesticides because of their simplicity, high sensitivity, short analysis time and low analysis cost, as well as their applicability to real time measurements. For more than 15 years, biosensors based on enzyme inhibition have been developed to monitor pesticide residues for food control and safety. Conductive polymers have been commonly used during constructions of these pesticide biosensors. In this study, studies on biosensors used for pesticide analyses were summarized and then studies on acetylcholinesterase Inhibition based biosensors developed by using conducting polymers for pesticide analyses were reviewed.

  • [1] Chapalamadugu, S., Chaudhry, G.R., 1992. Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Critical Reveviews in Biotechnology 12: 357–389.
  • [2] Dikshith, T.S.S., 1991. Pesticides. In: Dikshith, T.S.S. (Ed.), Toxicology of Pesticides in Animals, CRC Press, Boston, pp. 1–39.
  • [3] Pundir, C.K., Chauhan, N., 2012. Acetylcholinesterase inhibition-based biosensors for pesticide detremination: A review. Analytical Chemistry 429: 19-31.
  • [4] Singh, D.K., Agarwal, R.A., 1983. Inhibition kinetics of certain organophosphorus and carbamate pesticides on acetylcholinesterase from the snail Lymnaea acuminata. Toxicology Letters 19: 313–319.
  • [5] Purves, D., Augustine, G.J., Fitzpatrick, D., Katz, L.C., LaMantia, A.-S.i McNamara, J.O., Williams, S.M., 2001. Neuroscience. The 2nd Edition. Sinauer Associates, Sunderland (MA), USA.
  • [6] Taylor, P., Camp, S., Radić, Z., 2009. Encyclopedia of Neuroscience (Squire, L.R., Editor-in-Chief). Academic Press, Elsevier Inc., pp. 5–7.
  • [7] Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A.S., McNamara, J.O., White, L.E., 2008. Neuroscience. The 4th Edition. Sinauer Associates, Sunderland, MA, USA.
  • [8] Krasinski, A., Radic, Z., Manetsch, R., Raushel, J., Taylor, P., Sharpless, K.B., Kolb, H.C., 2005. In situ selection of lead compounds by click chemistry: target-guided optimization of acetylcholinesterase inhibitors. Journal of American Chemical Society 127: 6686–6692.
  • [9] Manetsch, R., Krasinski, A., Radic, Z., Raushel, J., Taylor, P., Sharpless, K.B., Kolb, H.C., 2004. In situ click chemistry: enzyme inhibitors made to their own specifications. Journal of American Chemical Society 126: 12809–12818.
  • [10] Woster, P.M., 2001. Pharmaceutical Biochemistry, HarperCollins, New York, USA.
  • [11] Lin, G., Lee, Y.R., Liu, Y.C., Wu, Y.G., 2005. Ortho effect for inhibition mechanisms of butyrylcholinesterase by o-substitute phenyl L-butyl carbamates and comparison with acetylcholinesterase, cholesterol esterase, and phenol. Chemical Research in Toxicology 18: 1124–1131.
  • [12] Schulze, H., Muench, S.B., Villatte, F., Schmid, R.D., Bachmann, T.T., 2005. Insecticide detection through protein engineering of Nippostrongylus brasiliensis acetylcholinesterase B, Analitical Chemistry 77: 5823–5830.
  • [13] Andreescu, S., Avramescu, A., Bala, C., Magearu, V., Marty, J.-L., 2002. Detection of organophosphorus insecticides with immobilized acetylcholinesterase: comparative study between two enzyme sensors. Analytical and Bioanalytical Chemistry 374: 39–45.
  • [14] Montesinos, T. Pérez-Munguia, S. Valdez, F. Marty, J.L., 2001. Disposable cholinesterase biosensor for the detection of pesticides in water miscible–organic solvents. Analytica Chimica Acta 431: 231–237.
  • [15] Pogacnik, L., Franko, M., 2003. Detection of organophosphate and carbamate pesticides in vegetable samples by a photothermal biosensor. Biosensors and Bioelectronics 18: 1–9.
  • [16] Prodromidis, M.I. Karayannis, M.I., 2002. Enzyme based amperometric biosensors for food analysis. Electroanalysis 14: 241–261.
  • [17] Turner, A.P.F., Karube, I., Wilson, G.S., 1987. Biosensors: Fundamentals and Applications. Oxford University Press, Oxford, p. 770.
  • [18] Clark, L.C.Jr., 1956. Monitor and control of blood tissue O2 tensions. Transactions American Society for Artificial Internal Organs 2: 41–48.
  • [19] Updike, S.J., Hicks, J.P., 1967. The enzyme electrode. Nature 214: 986–988.
  • [20] Clark, L.C.,Jr., Lyons, C., 1962. Electrode system for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 102: 29–45.
  • [21] Guilbault, G.G., Kramer, D.N., Cannon, P.L.Jr., 1962. Electrochemical determination of organophosphorous compounds. Analytical Chemistry 34(11): 1437-1439.
  • [22] Kitz, R., Wilson, I.B., 1962. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. Journal of Biological Chemistry 237: 3245–3249.
  • [23] Segel, I.H., 1976. How to solve mathematical problems in general biochemistry? In Biochemical Calculation. 2nd Edition. Wiley, New York, pp. 208–223.
  • [24] Amine, A., Arduini, F., Moscone, D., Palleschi, G., 2016. Recent advances inbiosensors based on enzyme inhibition. Biosensors and Bioelectronics 76: 180-194.
  • [25] Diaz, A.F., Kanazawa, K.K., Gardini, G.P., 1979. Electrochemical polymeriation of pyrrole. Journal of the Chemical Society, Chemical Communications 635-636.
  • [26] Saraswathi, R., Gerard, M., Malhotra, B.D., 1999. Characteristics of aqueous polycarbazole batteries. Jourrnal of Applied Polymer Science 74: 145-150.
  • [27] Kawai, T., Kuwabara, T., Wang, S., Yoshino, K., 1990. Secondary battery characteristics of poly(3-alkylthiophene). Japanese Journal of Applied Physics 29: 602-605.
  • [28] Weetall, H.H., Druzhko, A.B., de Lera, A., Alvarez, R., Robertson, B., 2000. Measurement of proton release and uptake by analogs of bacteriorhodopsin. Bioelectrochemistry 51: 27-23.
  • [29] Letheby, H., 1862. On the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc. 15: 161-163.
  • [30] Natta, G., Mazzanti, G., Corradini P., 1958. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei 25(8): 3.
  • [31] Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, A.J., 1977. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society, Chemical Communications 578-580.
  • [32] Heinze J., 1991. Electrochemistry of conducting polymers. Synthetic Metals 41-43: 2805-2823.
  • [33] Ivanov, A.N., Lukachova, L.V., Evtugyn, G.A., Karyakina, E.E., Kiseleva, S.G., Budnikov, H.C., Orlov, A.V., Karpacheva, G.P., Karyakin, A.A., 2002. Polyaniline-modified cholinesterase sensor for pesticide determination. Bioelectrochemistry 55: 75–77.
  • [34] Somerset, V.S., Klink, M.J., Baker, P.G.L., Iwuoha, E.I., 2007. Acetylcholinesterase-polyaniline biosensor investigation of organophosphate pesticides in selected organic solvents. Journal of Environmental Science and Health Part B 42: 297–304.
  • [35] Viswanathan, S., Radecka, H., Radecki, J., 2009. Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosensors and Bioelectronics 24: 2772–2777.
  • [36] Chauhan, N., Narang, J., Pundir, C.S., 2011. Immobilization of rat brain acetylcholinesterase on ZnS and poly(indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides. Biosensors and Bioelectronics 29: 82– 88.
  • [37] Ekiz Kanik, F., Kolb, M., Timur, S., Bahadir, M., Toppare, L., 2013. An amperometric acetylcholine biosensor based on a conducting polymer. International Journal of Biological Macromolecules 59: 111–118.
  • [38] Kesik, M., Ekiz Kanik, F., Turan, J., Kolb, M., Timur, S., Bahadir, M., Toppare, L., 2014. An acetylcholinesterase biosensor based on a conducting polymerusing multiwalled carbon nanotubes for amperometric detection oforganophosphorous pesticides. Sensors and Actuators B 205: 39–49.
  • [39] He, L., Cui, B., Liu, J., Song, Y., Wang, M., Peng, D., Zhang, Z., 2017. Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion. Sensors and Actuators B: Chemical https://doi.org/10.1016/j.snb.2017.11.161.
  • [40] Du, D., Ye, X., Cai, J., Liu, J., Zhang, A., 2010. Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Biosensors and Bioelectronics 25: 2503–2508.
  • [41] Dutta, R.R., Puzari, P., 2014. Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode. Biosensors and Bioelectronics 52: 166–172.
  • [42] Gong, J., Wang, L., Zhang, L., 2009. Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au–polypyrrole interlaced network-like nanocomposite. Biosensors and Bioelectronics 24: 2285–2288.
  • [43] Cesarino, I., Moraes, F.C., Lanza, M.R.V., Machado, S.A.S., 2012. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chemistry 135: 873–879.
  • [44] Istamboulie, G., Sikora, T., Jubete, E., Ochoteco, E., Marty, J.-L., Noguer, T., 2010. Screen-printed poly(3,4-ethylenedioxythiophene) (PEDOT): A new electrochemical mediator for acetylcholinesterase-based biosensors. Talanta 82: 957–961.
Konular Gıda Bilimi ve Teknolojisi
Dergi Bölümü Derleme Makaleler
Yazarlar

Orcid: 0000-0003-0334-5621
Yazar: Songül Şen Gürsoy (Sorumlu Yazar)

Orcid: 0000-0003-0334-5621
Yazar: Oğuz Gürsoy

Bibtex @derleme { akademik-gida370401, journal = {Akademik Gıda}, issn = {1304-7582}, eissn = {2148-015X}, address = {Sidas Medya Ajans Tanıtım Danışmanlık Ltd. Şti.}, year = {2017}, volume = {15}, pages = {426 - 435}, doi = {10.24323/akademik-gida.370401}, title = {Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler}, key = {cite}, author = {Şen Gürsoy, Songül and Gürsoy, Oğuz} }
APA Şen Gürsoy, S , Gürsoy, O . (2017). Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler. Akademik Gıda, 15 (4), 426-435. DOI: 10.24323/akademik-gida.370401
MLA Şen Gürsoy, S , Gürsoy, O . "Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler". Akademik Gıda 15 (2017): 426-435 <http://dergipark.gov.tr/akademik-gida/issue/33245/370401>
Chicago Şen Gürsoy, S , Gürsoy, O . "Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler". Akademik Gıda 15 (2017): 426-435
RIS TY - JOUR T1 - Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler AU - Songül Şen Gürsoy , Oğuz Gürsoy Y1 - 2017 PY - 2017 N1 - doi: 10.24323/akademik-gida.370401 DO - 10.24323/akademik-gida.370401 T2 - Akademik Gıda JF - Journal JO - JOR SP - 426 EP - 435 VL - 15 IS - 4 SN - 1304-7582-2148-015X M3 - doi: 10.24323/akademik-gida.370401 UR - http://dx.doi.org/10.24323/akademik-gida.370401 Y2 - 2017 ER -
EndNote %0 Akademik Gıda Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler %A Songül Şen Gürsoy , Oğuz Gürsoy %T Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler %D 2017 %J Akademik Gıda %P 1304-7582-2148-015X %V 15 %N 4 %R doi: 10.24323/akademik-gida.370401 %U 10.24323/akademik-gida.370401
ISNAD Şen Gürsoy, Songül , Gürsoy, Oğuz . "Pestisit Analizlerinde Asetilkolinesteraz İnhibisyonuna Dayalı İletken Polimer Esaslı Biyosensörler". Akademik Gıda 15 / 4 (Aralık 2017): 426-435. http://dx.doi.org/10.24323/akademik-gida.370401