Yıl 2018, Cilt 16, Sayı 1, Sayfalar 1 - 10 2018-04-23

Tütün Saplarından Kombine Otohidroliz ve Enzimatik Hidroliz ile Ksiloz Üretimi
Xylose Production By Combined Autohydrolysis and Enzymatic Hydrolysis From Tobacco Stalks

Fatmagül Halıcı Demir [1] , Özlem Akpınar [2]

100 134

Tütün sapları, yaprakları alındıktan sonra geride kalan ksilanca zengin, önemli bir ekonomik değeri bulunmayan ancak ksiloz ve ksilitol üretimi için potansiyel bir kaynak oluşturacak bir atıktır. Ksiloz genellikle kimyasal metotlarla üretilir;  bu yöntemle asit gibi korozif kimyasalların kullanılması ya da işlem sırasında istenmeyen bileşiklerin oluşması gibi olumsuzluklar görülmektedir. Alternatif olarak, ksiloz enzim hidroliziyle de üretilebilir. Enzimatik hidroliz daha spesifik olduğu gibi, reaksiyon ılımlı koşullarda gerçekleşir ve hidroliz aşamasında istenmeyen bileşikler oluşmaz. Bu çalışmada tütün sapları 160°C’de 1 saatte ekstrakte edilen ksilanca zengin likörden Trichoderma longibrachiatum ksilanazı ile ksiloz üretilmiştir. Hidrolizasyon işlemi cevap yüzey yöntemi ile optimize edilmiştir. Optimum substrat ve enzim konsantrasyonu 0.28 g atık/mL KOL ve 228 U/mL olarak bulunmuştur. Optimum koşullar altında yapılan hidrolizasyonunda ise ksiloz %79.8 verimle ve 1.9 g/g seçicilikle üretilmiştir.

Tobacco stalk remains after the harvest of leaves and is no important economic value but it is rich in xylan that can serve as a potential source for xylose and xylitol production. Generally, xylose is produced by chemical methods, but this method has several disadvantages such as use of corrosive chemicals like acid or the formation of undesired compounds. Alternatively, xylose can be produced by enzyme hydrolysis. Enzymatic hydrolysis is more specific and the reaction takes place at mild conditions and does not produce undesirable compounds. In this study, xylan rich liquors, extracted at 160°C for 1 h from tobacco stalks, were used to produce xylose with Trichoderma longibrachiatum xylanase. The optimum substrate concentrations and enzyme activity were 0.28 g waste/mL CAL and 228 U/mL, respectively. Under the optimum condition, xylose yield and selectivity were 79.8% and 1.9 g/g, respectively.

  • [1] Anonim, 2007. http://www.agrowaste-tr.org/abife/index.php ( 11.08.2013).
  • [2] Erdoğan, K., 2007. Tütün Saplarından Ksilooligosakkarit Üretimi, Yüksek Lisans Tezi, Gaziosmanpaşa Üniversitesi, Tokat.
  • [3] Öztürk, H.H., Başçetinçelik, A., 2006. Energy exploitation of agricultural biomass potential in Turkey. Energy Exploration and Exploitation 24(1): 95-112.
  • [4] Bostancı, Ş., 2009. Tarımsal Atıklardan Enzimatik Yolla Ksilooligosakkarit Üretimi, Yüksek Lisans Tezi, Gaziosmanpaşa Üniversitesi, Tokat.
  • [5] Günay, K., 2010. Lignoselülozik Materyallerden Otohidroliz ve Enzimatik Hidrolizle Ksilooligosakkarit Üretimi, Yüksek Lisans Tezi, Gaziosmanpaşa Üniversitesi, Tokat.
  • [6] Akpınar, O., Levent, O., Sabancı, S., Uysal, R.S., Sapcı, B., 2011. Optimization and comparision of dilute acid pretreatment of selected agricultural residues for recovery of xylose. Bioresources 6(4): 4103-4116.
  • [7] Uysal, R.S., 2011. Tütün ve Ayçiçeği Sapından Ksilitol Üretimini Optimizasyonu, Yüksek Lisans Tezi, Gaziosmanpaşa Üniversitesi, Tokat.
  • [8] Sabancı, S., 2012. Buğday Tarlası Atıklarından Ksilitol Üretim Koşullarının Optimizasyonu ve Ksilitolün Saflaştırılması, Yüksek Lisans Tezi, Gaziosmanpaşa Üniversitesi, Tokat.
  • [9] Sapcı, B., 2012. Pamuk Saplarından Antioksidan ve Ksilitol Üretimi, Yüksek Lisans Tezi, Gaziosmanpaşa Üniversitesi, Tokat. [10] Saha, B.C., 2003. Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology 30: 279-291.
  • [11] Erdoğan, K., Akpınar, Ö., 2008. Ksilooligosakkaritlerin önemi, üretimi ve kullanım alanları. Akademik Gıda 6(4): 14-20.
  • [12] Vazquez, M.J., Alonso, J.L., Dominguez, H., Parajo, J.C., 2000. Xylooligosaccharides: manufacture and applications. Trends in Food Science and Technology 11: 387-393.
  • [13] Moure, A., Gullon, P., Dominguez, H., Parajo, J.C., 2006. Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochemistry 41: 1913-1923.
  • [14] Vegas, R., Luque, S., Alvarez, R., Alonso, J.L., Dominguez, H., Parajo, J.C., 2006. Membrane-assisted processing of xylooligosaccharide-containing liquors. Journal of Agricultural and Food Chemistry 54: 5430-5436.
  • [15] Garrote, G., Dominguez, H., Parajo, J.C., 2002. Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. Journal of Food Engineering 52: 211-218.
  • [16] Garrote, G., Domınguez, H., Parajo, J.C., 1999. Mild autohydrolysis: an environmentally friendly technology for xyloolgosaccharide production from wood. Journal of Chemical and Biotechnology 74: 1101-1109.
  • [17] ASTM, 1993. Annual Book of ASTM Standards, American Society for Testing and Materials (04.09). Phidelphia, PA
  • [18] Browning. L., 1967. Determination of sugars, Methods of Wood Chemistry, Inter-Science Publishers, New York.
  • [19] Melton, L.D., Smith, B.G., 2001. Determination of the Uronic Acid Content of Plant Cell Walls Using a Colorimetric Assay. In Current Protocols in Food Analytical Chemistry, Edited by R.E. Wrolstad, T.E. Acree, E.A. Decker, M.H. Penner, D.S. Reid, S.J. Schwartz, C.F., Shoemaker, D. Smith and P Sporns, John Wiley & Sons, Inc., New York.
  • [20] William, S., 1997. Furfural in Distilled Liquors (9.097). In AOAC official methods of analysis Arlington, VA.
  • [21] Bradford, M.A., 1976. A rapid and sensitive method for quantification of micro gram quantities of protein utilizing principle of protein dye binding. Analytical Biochemistry 72: 248-254.
  • [22] Bailey, M.J., Biely, P., Poutanen, K., 1992. Interlabratory testing of methods for assay of xylanase activity. Journal of Biotechnology 23: 257-270.
  • [23] Canettieri, E.V., Moraes Rocho, G.J., Carvalho, Jr, K.A., Almeida e Silva, J.B., 2007. Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Bioresource Technology 98: 422-428.
  • [24] Parajo, J.C., Garrote, G., Cruz, J.M. Dominguez, H., 2004. Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends in Food Science and Technology 15 (3-4): 115-120.
  • [25] Girio, F.M., Fonseca, C., Carvalheiro, L.C., Duarte, S., Marques, R., Bogel-Lukasik, R., 2010. Hemicelluloses for fuel ethanol. Bioresource Techonology 101: 4775-4800.
  • [26] Yuan, Q.P., Zhang, H., Qian, Z.M., Yang, X.J., 2004. Piplot-plant production of xylooligosaccharides from corncob by steaming, enzymatic hydrolysis and nanofiltration. Journal of Chemical Technology and Biotechnology 79: 1073-1079.
  • [27] Collins, T., Gerday, C., Feller, G., 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews 29: 3-23.
  • [28] Berrin, J.G., Juge, N., 2008. Factors affecting xylanase functionality in thedegradation of arabinoxylans. Biotechnology Letters 30 (7): 1139-1150.
  • [29] Akpınar, Ö., Ak, Ö., Kavas, A., Bakır, U., Yılmaz, L., 2007. Enzymatic production of xylooligosaccharides from cotton stalk. Journal of Agricultural and Food Chemistry 55: 5544-5551.
  • [30] Sabiha- Hanım, S., Noor, M.A.M., Rosma, A., 2011. Effect of autohydrolysis and enzymatic treatment on oil palm (Elaeis guineensis Jacq.) frond fibres for xylose and xylooligosaccharides production. Bioresource Technology 102: 1234–1239.
  • [31] Agger J, Vikso-Nielsen, A, Meyer, A.S., 2010. Enzymatic xylose release from pretreated corn bran arabinoxylan: differential effects of deacetylation and deferuloylation on insoluble and soluble substrate fractions. Journal of Agriculture and Food Chemistry 58: 6141-6148.
  • [32] Roberto, C.I., Mussatto, I.S. Rodrigues , C.L.B.R., 2003. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Industrial Crop and products 17: 171-176.
  • [33] Rahman, S.H.A., Choudhury, J.P., Ahmad, A.L., Kamaruddin, A.H., 2007. Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Biesource Technology 98: 554–559.
  • [34] Shatalov, A.A., Pereira, H., 2012 Xylose production from giant reed (Arundo donax L.): modeling and optimization of dilute acid hydrolysis. Carbohydrate Polymers 87: 210–217.
  • [35] Akpınar, Ö., Erdoğan, K., Bostancı, Ş., 2009. Enzymatic production of xylooligosaccharide from selected agricultural wastes. Food and Bioproducts Processing 87: 145-151.
Birincil Dil tr
Konular
Dergi Bölümü Araştırma Makaleleri
Yazarlar

Orcid: 0000-0003-3521-1556
Yazar: Fatmagül Halıcı Demir

Orcid: 0000-0001-6593-8495
Yazar: Özlem Akpınar

Bibtex @araştırma makalesi { akademik-gida415613, journal = {Akademik Gıda}, issn = {1304-7582}, eissn = {2148-015X}, address = {Sidas Medya Ajans Tanıtım Danışmanlık Ltd. Şti.}, year = {2018}, volume = {16}, pages = {1 - 10}, doi = {10.24323/akademik-gida.415613}, title = {Tütün Saplarından Kombine Otohidroliz ve Enzimatik Hidroliz ile Ksiloz Üretimi}, key = {cite}, author = {Akpınar, Özlem and Halıcı Demir, Fatmagül} }
APA Halıcı Demir, F , Akpınar, Ö . (2018). Tütün Saplarından Kombine Otohidroliz ve Enzimatik Hidroliz ile Ksiloz Üretimi. Akademik Gıda, 16 (1), 1-10. DOI: 10.24323/akademik-gida.415613
MLA Halıcı Demir, F , Akpınar, Ö . "Tütün Saplarından Kombine Otohidroliz ve Enzimatik Hidroliz ile Ksiloz Üretimi". Akademik Gıda 16 (2018): 1-10 <http://dergipark.gov.tr/akademik-gida/issue/36746/415613>
Chicago Halıcı Demir, F , Akpınar, Ö . "Tütün Saplarından Kombine Otohidroliz ve Enzimatik Hidroliz ile Ksiloz Üretimi". Akademik Gıda 16 (2018): 1-10
RIS TY - JOUR T1 - Tütün Saplarından Kombine Otohidroliz ve Enzimatik Hidroliz ile Ksiloz Üretimi AU - Fatmagül Halıcı Demir , Özlem Akpınar Y1 - 2018 PY - 2018 N1 - doi: 10.24323/akademik-gida.415613 DO - 10.24323/akademik-gida.415613 T2 - Akademik Gıda JF - Journal JO - JOR SP - 1 EP - 10 VL - 16 IS - 1 SN - 1304-7582-2148-015X M3 - doi: 10.24323/akademik-gida.415613 UR - http://dx.doi.org/10.24323/akademik-gida.415613 Y2 - 2016 ER -
EndNote %0 Akademik Gıda Tütün Saplarından Kombine Otohidroliz ve Enzimatik Hidroliz ile Ksiloz Üretimi %A Fatmagül Halıcı Demir , Özlem Akpınar %T Tütün Saplarından Kombine Otohidroliz ve Enzimatik Hidroliz ile Ksiloz Üretimi %D 2018 %J Akademik Gıda %P 1304-7582-2148-015X %V 16 %N 1 %R doi: 10.24323/akademik-gida.415613 %U 10.24323/akademik-gida.415613
ISNAD Halıcı Demir, Fatmagül , Akpınar, Özlem . "Tütün Saplarından Kombine Otohidroliz ve Enzimatik Hidroliz ile Ksiloz Üretimi". Akademik Gıda 16 / 1 (Nisan 2018): 1-10. http://dx.doi.org/10.24323/akademik-gida.415613