Yıl 2017, Cilt 5, Sayı 2, Sayfalar 283 - 292 2017-11-29

Gen Örneklerinin Eşli Destek Vektör Makinesi ile Sınıflandırılması
Classification of Gene Samples Using Pair-Wise Support Vector Machines

Engin Taş [1]

86 143

Gen örnekleriyle ilgili karşılaşılan sınıflandırma problemlerinde en büyük sorun az sayıda örnek elde edilmesine karşın verinin büyük boyutlu olmasıdır. Bu tür problemlerde kullanılacak sınıflandırıcının büyük boyutlu verinin işlenmesine olanak sağlayan ve eldeki az sayıda örnekten maksimum bilgiyi çıkaran bir sınıflandırıcı olması gerekir. Bu kapsamda, öncelikle ikili/çoklu sınıflandırma problemlerini ayrı ayrı eşli ikili sınıflandırma problemlerine çeviren bir sınıflandırma metodolojisi geliştirilmiştir. Bunun için, çevrimiçi bir sınıflandırıcı eşli ikili sınıflandırma problemlerini çözecek şekilde tekrar düzenlenmiştir. Oluşan sınıflandırıcı gerçek problemlerin çoğu üzerinde diğer popüler sınıflandırıcılara göre oldukça iyi bir performans göstermiştir.
The main problem in the classification problems encountered with gene samples is that the dimension of the data is high although the sample size is small. In such problems, the classifier to be used must be a classifier that allows the processing of high dimensional data and extracts maximum information from a small number of samples at hand. In this context, a classification methodology has been developed, which first transforms the problem of binary or multiple classification into separate pair-wise classification problems. To this end, an online classifier has been adapted to solve pair-wise binary classification problems. The resulting classifier performed better on most of the real problems compared to other popular classifiers.
  • Anlauf, J.K., & Biehl, M. (1989). The adatron: an adaptive perceptron algorithm. EPL (Europhysics Letters). 10(7): p. 687.
  • Basilico, J., & Hofmann, T. (2004). Unifying collaborative and content-based filtering. In Proceedings of the twenty-first international conference on Machine learning. p. 9. ACM.
  • Ben-Hur, A. & Noble, W.S. (2005). Kernel methods for predicting protein–protein interactions. Bioinformatics, 21(suppl 1): pp.i38-i46.
  • Bordes, A., Ertekin, S., Weston, J., & Bottou, L. (2005). Fast kernel classifiers with online and active learning. Journal of Machine Learning Research. 6: pp.1579-1619.
  • Boser, B.E., Guyon, I.M., & Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. In the Proceedings of the fifth annual workshop on Computational learning theory. pp: 144-152. ACM.
  • Bottou, L., & LeCun, Y. (2003). Large scale online learning. In NIPS. 30: p. 77.
  • Dietterich, T., & Bakiri G. (1995). Solving multiclass learning problems via error correcting output codes, Journal of Artificial Intelligence Research, 2: 263-286.
  • Dudoit, S., Fridlyand, J., & Speed, T. (2002). Comparison of discrimination methods for the classification of tumors using geneexpression data. J. Am. Stat. Assoc. 97: 77–87.
  • Freund, Y., & Schapire, R.E. (1999). Large margin classification using the perceptron algorithm. Machine learning. 37(3): pp.277-296.
  • Friedman J. (1996). Another approach to polychotomous classifcation, Technical Report, Technical report, Stanford University, Department of Statistics.
  • Gentile, C. (2001). A new approximate maximal margin classification algorithm. Journal of Machine Learning Research. 2: pp.213-242.
  • Kashima, H., Oyama, S., Yamanishi, Y., & Tsuda, K. (2009). On pairwise kernels: An efficient alternative and generalization analysis. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. pp. 1030-1037. Springer Berlin Heidelberg.
  • Li, Y., & Long, P.M. (2002). The relaxed online maximum margin algorithm. Machine Learning. 46(1-3): pp.361-387.
  • Mayoraz, E., & Alpaydin E. (1999). Support vector machines for multi-class classification. In the International Work-Conference on Artificial Neural Networks. Springer Berlin Heidelberg.
  • Minsky, M., & Papert, S. (1969). Perceptrons.
  • Oyama, S., & Manning, C.D. (2004). Using feature conjunctions across examples for learning pairwise classifiers. In European Conference on Machine Learning. pp. 322-333. Springer Berlin Heidelberg.
  • Platt, J.C. (1999). 12 fast training of support vector machines using sequential minimal optimization. Advances in kernel methods. pp.185-208.
  • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological review, 65(6): p. 386.
  • Shalev-Shwartz, S., Singer, Y., & Srebro, N. (2007). Pegasos: Primal estimated sub-gradient solver for svm. In Proceedings of the 24th international conference on Machine learning. pp. 807-814. ACM.
  • Schölkopf, B., & Smola, A.J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.
  • Vert, J.P., Qiu, J., & Noble, W.S. (2007). A new pairwise kernel for biological network inference with support vector machines. BMC bioinformatics, 8(10): p.S8.
  • Weston, J., & Watkins, C. (1999). Support vector machines for multi-class pattern recognition. In ESANN. 99: pp. 219-224.
  • Xu, W. (2011). Towards optimal one pass large scale learning with averaged stochastic gradient descent. arXiv preprint arXiv:1107.2490.
Konular Sosyal
Dergi Bölümü Makaleler
Yazarlar

Orcid: 0000-0003-3644-0131
Yazar: Engin Taş
Kurum: Afyon Kocatepe University
Ülke: Turkey


Bibtex @araştırma makalesi { alphanumeric345115, journal = {Alphanumeric Journal}, issn = {}, eissn = {2148-2225}, address = {Bahadır Fatih Yıldırım}, year = {2017}, volume = {5}, pages = {283 - 292}, doi = {10.17093/alphanumeric.345115}, title = {Classification of Gene Samples Using Pair-Wise Support Vector Machines}, key = {cite}, author = {Taş, Engin} }
APA Taş, E . (2017). Classification of Gene Samples Using Pair-Wise Support Vector Machines. Alphanumeric Journal, 5 (2), 283-292. DOI: 10.17093/alphanumeric.345115
MLA Taş, E . "Classification of Gene Samples Using Pair-Wise Support Vector Machines". Alphanumeric Journal 5 (2017): 283-292 <http://dergipark.gov.tr/alphanumeric/issue/31474/345115>
Chicago Taş, E . "Classification of Gene Samples Using Pair-Wise Support Vector Machines". Alphanumeric Journal 5 (2017): 283-292
RIS TY - JOUR T1 - Classification of Gene Samples Using Pair-Wise Support Vector Machines AU - Engin Taş Y1 - 2017 PY - 2017 N1 - doi: 10.17093/alphanumeric.345115 DO - 10.17093/alphanumeric.345115 T2 - Alphanumeric Journal JF - Journal JO - JOR SP - 283 EP - 292 VL - 5 IS - 2 SN - -2148-2225 M3 - doi: 10.17093/alphanumeric.345115 UR - http://dx.doi.org/10.17093/alphanumeric.345115 Y2 - 2017 ER -
EndNote %0 Alphanumeric Journal Classification of Gene Samples Using Pair-Wise Support Vector Machines %A Engin Taş %T Classification of Gene Samples Using Pair-Wise Support Vector Machines %D 2017 %J Alphanumeric Journal %P -2148-2225 %V 5 %N 2 %R doi: 10.17093/alphanumeric.345115 %U 10.17093/alphanumeric.345115
ISNAD Taş, Engin . "Gen Örneklerinin Eşli Destek Vektör Makinesi ile Sınıflandırılması". Alphanumeric Journal 5 / 2 (Kasım 2017): 283-292. http://dx.doi.org/10.17093/alphanumeric.345115