Yıl 2015, Cilt 3, Sayı 1, Sayfalar 42 - 47 2015-11-14

Using Modified Couple Stress Theory to Investigate the Size-Dependent Instability of Rotational Nano-Actuator under Van der Waals Force

Yaghoub Tadi Beni [1]

303 290

While experiments reveal that the mechanical response of nano-structures is size-dependent, classic continuum theories are not able to simulate this size effect. In this paper, a non-classic continuum theory e.g. modified couple stress theory is applied for modeling the size dependent instability of torsional nano-actuator. The constitutive equation of the actuator is derived taking the effect of electrostatic and molecular forces into account. Variation of the tilt angle as a function of the applied voltage is obtained and the instability parameters i.e. instability voltage and instability angle are determined. Two actuators with different cross-sectional torsional beams are investigated as case studies. Results show that when the thickness of the torsional beam is comparable with the intrinsic material length scale, size-dependency of material characteristics can highly affect the instability parameters of the actuator. The effect of van der Waals (vdW) molecular forces on the size-dependent instability is investigated. Furthermore, the minimum gap between the mirror and the ground to ensure that the actuator does not adhere the substrate (due to molecular force) is computed. It is found that proposed model is able to predict the experimental results more accurately than the previous classic models.
Rotational nano-actuator, Size effect, Modified couple stress theory, Pull-in instability, van der Waals force
  • 1] H. Toshiyoshi and H. Fujita, Electrostatic microtorsion mirrors for an optical switch matrix, J. Microelectromech. Syst. 1996, 5: 231–237.
  • [2] J.E. Ford, V.A. Aksyuk, D.J. Bishop, J.A. Walker, Wavelength add-drop switching using tilting micromirrors, J. Lightwave Technol. 1999, 17: 904– 911.
  • [3] Y. Nemirovsky and O. Bochobza-Degani, A Methodology and Model for the Pull-In Parameters of Electrostatic Actuators, J. Microelectromech. Syst. 2001, 10(4): 601-615.
  • [4]J. Cheng, J. Zhe, X. Wu, Analytical and finite element model pull-in study of rigid and deformable electrostatic microactuators, J. Micromech. Microeng. 2004, 14: 57–68.
  • [5] K.S. Nagapriya, O. Goldbart, I. Kaplan-Ashiri, G. Seifert, R. Tenne, E. Joselevich, Torsional Stick-Slip Behavior inWS2 Nanotubes, Phys. Rev. Lett. 2008, 101: 195501.
  • [6] J.P. Zhao, H.L. Chen, J.M. Huang and A.Q.Liu, A study of dynamic characteristics and simulations of MEMS torsional micromirror, Sens. Actuat. A 2005, 120: 199–210.
  • [7] H. Moeenfard and M.T. Ahmadian, Analytical modeling of bending effect on the torsional response of electrostatically actuated micromirrors, Optik 2012, in press.
  • [8] Z.X. Xiao, X.T. Wu, W.Y. Peng and K.R. Farmer, An angle-based design approach for rectangular electrostatic torsion actuators, J. Microelectromech. Syst. 2001, 10: 561–568
  • [9] O. Degani and Y. Nemirovsky, Design considerations of rectangular electrostatic torsion actuators based on new analytical pull-in expressions, J. Microelectromech. Syst. 2002, 11: 20–26.
  • [10] O. Degani, E. Socher, A. Lipson, T. Leitner, D.J. Setter, S. Kaldor and Y. Nemirovsky, Pull-in study of an electrostatic torsion microactuator, J. Microelectromech. Syst. 1998, 7(4): 373-379.
  • [11] H. Moeenfard, A. Darvishian, H. Zohoor and M.T. Ahmadian, Characterization of the static behavior of micromirrors under the effect of capillary force, an analytical approach, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2012) doi: 10.1177/0954406211433112.
  • [12] X.M. Zhang, F.S. Chau, C. Quan, Y.L. Lam and A.Q. Liu, A study of the static characteristics of a torsional micromirror, Sens. Actuators, A 2001, 90: 73-81.
  • [13] .B. Degani and Y. Nemirovisky, Modeling the pull-in parameters of electrostatic actuators with a novel lumped two degrees of freedom pull-in model, Sens. Actuators, A 2001, 97–98: 569-578.
  • [14] J. M. Huang, A. Q. Liu, Z. L. Deng, Q. X. Zhang, J. Ahn, A. Asundi, An approach to the coupling effect between torsion and bending for electrostatic torsional micromirrors, Sens. Actuat. A 2004, 115: 159–167.
  • [15] M.F. Daqaq, E.M. Abdel-Rahman and A.H. Nayfeh, Towards a stable low-voltage torsional microscanner, Microsyst. Technol. 2008,14:725-737.
  • [16] G. Rezazadeh, F. Khatami, A. Tahmasebi, Investigation of the torsion and bending effects on static stability of electrostatic torsional micromirrors, Microsyst. Technol. 2007, 13: 715–722.
  • [17] Y. Tadi Beni, A. Koochi, A.S. Kazemi and M. Abadyan, Modeling the Influence of Surface Effect and Molecular Force on Pull-in Voltage of Rotational Nano/Micro Mirror Using 2-DOF Model, Can. J. of Phys. 2012, 90: 963-974.
  • [18] Y. Tadi Beni, Use of Augmented Continuum Theory for Modeling the Size Dependent Material Behavior of Nano-Actuators, IJST, Transaction of Mechanical Engineering 2012, 36(M1): 41-52.
  • [19] F. Khatami, Gh. Rezazadeh, Dynamic response of a torsional micromirror to electrostatic force and mechanical shock, Microsyst. Tech. 2009, 15: 535– 545.
  • [20] A. Koochi, A.R. Noghrehabadi and M. Abadyan, approximating the effect of van der force on the instability of electrostatic nano-cantilivers, Int. J. Mod. Phys. B 2011, 25: 3965-3976.
  • [21] R.C. Batra, M. Porfiri and D. Spinello, Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates Sensors 2008, 8: 1048-1069.
  • [22] J.M. Dequesnes, S.V. Rotkin and N.R. Aluru, Calculation of pull-in voltages for carbon nanotubebased nanoelectromechanical switches, Nanotechnology 2002, 13: 120.
  • [23] M. Moghimi Zand, M.T. Ahmadian, B. Rashidian, Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van derWaals forces, Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. 2010, 224 (9): 2037.
  • [24] W.H. Lin, Y.P. Zhao, Stability and bifurcation behavior of electrostatic torsional NEMS varactor influenced by dispersion forces J. Phys. D: Appl. Phys. 2007, 40: 1649-1654.
  • [26] J.G. Guo and Y.P. Zhao, Influence of van der Waals and Casimir forces on electrostatic torsional actuators , J. Microelectromech. Sys. 2004, 13(6): 1027-1035.
  • [27] W.H. Lin and Y.P. Zhao, Dynamics behavior of nanoscale electrostatic actuators, Chin. Phys. Lett. 2003, 20: 2070-2073.
  • [28] J.G. Guo and Y.P. Zhao, Dynamic stability of electrostatic torsional actuators with van der Waals effect, Int. J. Solids Struct. 2006,43: 675-685.
  • [29] N.A. Fleck, G.M Muller, M.F. Ashby and J.W. Hutchinson, Strain gradient plasticity: Theory and experiment, Acta Metall. Mater. 1994,42(2):475–487.
  • [30] D.C.C. Lam, F. Yang, A.C.M Chong, J. Wang and P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids 2003, 51(8):1477–1508.
  • [31] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 1983, 54:4703– 4710.
  • [32] F. Yang, A.C.M. Chong, D.C.C Lam and P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct. 2002, 39(10): 2731– 2743.
  • [33] S. Kong, S. Zhou , Z. Nie, K. Wang, Static and dynamic analysis of micro beams based on strain gradient elasticity theory, int. J. Eng. Sci. 2009, 47: 487–498.
  • [34] S.K. Park and X.L. Gao, Bernoulli-Euler beam model based on a modified couple stress theory J. Micromech. Microeng. 2006, 16: 2355-2359.
  • [35] H.M. Ma, X.L. Gao and J.N. Reddy, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, J. Mech. Phys. Solids 2008, 56(12): 3379-3391.
  • [36] M. Asghari, M.T. Ahmadian, M.H. Kahrobaiyan and M. Rahaeifard, On the size-dependent behavior of functionally graded micro-beams, Mater. Des. 2010, 31: 2324-2329.
  • [37] L. Wang, Size-Dependent Vibration Characteristics of Fluid-Conveying. Microtubes, J. Fluid. Struct. 2010, 26: 675.
  • [38] Y. Tadi Beni, A. Koochi, M. Abadyan, Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS, Physica E, 2011, 43: 979-98
Birincil Dil tr
Konular
Dergi Bölümü Makaleler
Yazarlar

Yazar: Yaghoub Tadi Beni

Bibtex @ { apjes29221, journal = {Akademik Platform Mühendislik ve Fen Bilimleri Dergisi}, issn = {}, eissn = {2147-4575}, address = {Akademik Platform}, year = {2015}, volume = {3}, pages = {42 - 47}, doi = {10.5505/apjes.2015.92486}, title = {Using Modified Couple Stress Theory to Investigate the Size-Dependent Instability of Rotational Nano-Actuator under Van der Waals Force}, key = {cite}, author = {Beni, Yaghoub Tadi} }
APA Beni, Y . (2015). Using Modified Couple Stress Theory to Investigate the Size-Dependent Instability of Rotational Nano-Actuator under Van der Waals Force. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, 3 (1), 42-47. DOI: 10.5505/apjes.2015.92486
MLA Beni, Y . "Using Modified Couple Stress Theory to Investigate the Size-Dependent Instability of Rotational Nano-Actuator under Van der Waals Force". Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 3 (2015): 42-47 <http://dergipark.gov.tr/apjes/issue/2193/29221>
Chicago Beni, Y . "Using Modified Couple Stress Theory to Investigate the Size-Dependent Instability of Rotational Nano-Actuator under Van der Waals Force". Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 3 (2015): 42-47
RIS TY - JOUR T1 - Using Modified Couple Stress Theory to Investigate the Size-Dependent Instability of Rotational Nano-Actuator under Van der Waals Force AU - Yaghoub Tadi Beni Y1 - 2015 PY - 2015 N1 - doi: 10.5505/apjes.2015.92486 DO - 10.5505/apjes.2015.92486 T2 - Akademik Platform Mühendislik ve Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 42 EP - 47 VL - 3 IS - 1 SN - -2147-4575 M3 - doi: 10.5505/apjes.2015.92486 UR - http://dx.doi.org/10.5505/apjes.2015.92486 Y2 - 2019 ER -
EndNote %0 Akademik Platform Mühendislik ve Fen Bilimleri Dergisi Using Modified Couple Stress Theory to Investigate the Size-Dependent Instability of Rotational Nano-Actuator under Van der Waals Force %A Yaghoub Tadi Beni %T Using Modified Couple Stress Theory to Investigate the Size-Dependent Instability of Rotational Nano-Actuator under Van der Waals Force %D 2015 %J Akademik Platform Mühendislik ve Fen Bilimleri Dergisi %P -2147-4575 %V 3 %N 1 %R doi: 10.5505/apjes.2015.92486 %U 10.5505/apjes.2015.92486
ISNAD Beni, Yaghoub Tadi . "Using Modified Couple Stress Theory to Investigate the Size-Dependent Instability of Rotational Nano-Actuator under Van der Waals Force". Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 3 / 1 (Kasım 2015): 42-47. http://dx.doi.org/10.5505/apjes.2015.92486