Yıl 2018, Cilt 6, Sayı 2, Sayfalar 72 - 80 2018-08-03

Dynamic phase transition features of the cylindrical nanowire driven by a propagating magnetic field
Dynamic phase transition features of the cylindrical nanowire driven by a propagating magnetic field

Erol Vatansever [1]

21 35

Magnetic response of the spin-1/2 cylindrical nanowire to the propagating magnetic field wave has been investigated by means of Monte Carlo simulation method based on Metropolis algorithm. The obtained microscopic spin configurations suggest that the studied system exhibits two types of dynamical phases depending on the considered values of system parameters: Coherent propagation of spin bands and spin-frozen or pinned phases, as in the case of the conventional bulk systems under the influence of a propagating magnetic field. By benefiting from the temperature dependencies of variances of dynamic order parameter, internal energy and the derivative of dynamic order parameter of the system, dynamic phase diagrams are also obtained in related planes for varying values of the wavelength of the propagating magnetic field. Our simulation results demonstrate that as the strength of the field amplitude is increased, the phase transition points tend to shift to the relatively lower temperature regions. Moreover, it has been observed that dynamic phase boundary line shrinks inward when the value of wavelength of the external field decreases.

Magnetic response of the spin-1/2 cylindrical nanowire to the propagating magnetic field wave has been investigated by means of Monte Carlo simulation method based on Metropolis algorithm. The obtained microscopic spin configurations suggest that the studied system exhibits two types of dynamical phases depending on the considered values of system parameters: Coherent propagation of spin bands and spin-frozen or pinned phases, as in the case of the conventional bulk systems under the influence of a propagating magnetic field. By benefiting from the temperature dependencies of variances of dynamic order parameter, internal energy and the derivative of dynamic order parameter of the system, dynamic phase diagrams are also obtained in related planes for varying values of the wavelength of the propagating

magnetic field.  Our simulation results demonstrate that as the strength of the field amplitude is increased, the phase transition points   tend to shift to the relatively lower temperature regions. Moreover, it has been observed that dynamic phase boundary line shrinks   inward when the value of wavelength of the external field decreases. 

  • [1] T. Tomè and M.J. de Oliveira, “Dynamic phase transition in the kinetic Ising model under a time dependent oscillating magnetic field” Phys. Rev. A, vol. 41, pp. 4251-4254, 1990.
  • [2] W.S. Lo and R.A. Pelcovits, “Ising model in a time dependent magnetic field” Phys. Rev. A, vol. 42, pp. 7471-7474, 1990.
  • [3] S.W. Sides, P.A. Rikvold and M.A. Novotny, Phys. Rev. Lett. vol. 81, pp. 834-837 1998.
  • [4] G.M. Buendia and E. Machado, “Magnetic behaviour of a mixed Ising ferrimagnetic model in an oscillating magnetic field” Phys. Rev. B, vol. 61, pp. 14686-14690, 2000.
  • [5] G.M. Buendia and P.A. Rikvold, “Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating magnetic field: Universality with respect to the stochastic dynamics” Phys. Rev. E, vol. 78, pp. 051108 2008.
  • [6] B. Chakrabarti and M. Acharyya, “Dynamic transitions and hysteresis”Rev. Mod. Phys. vol. 71, pp. 847-859, 1999.
  • [7] M. Keskin, O. Canko and Ü. Temizer, “Dynamic phase transition in the kinetic spin-1 Blume-Capel model under a time dependent oscillating external field” Phys. Rev. E, vol. 72, pp. 036125 2005.
  • [8] X. Shi, G. Wei and L. Li, “Effective-field theory on the kinetic Ising model” Phys. Lett. A, vol. 372, pp. 5922-5926, 2008.
  • [9] H. Park and M. Pleimling, “Surface criticality at a dynamic phase transition” Phys. Rev. Lett., vol. 109, pp. 175703, 2012.
  • [10] Y. Yüksel, E. Vatansever and H. Polat, “Dynamic phase transition properties and hysteretic behaviour of a ferrimagnetic core-shell nanoparticle in the presence of a time dependent magnetic field” J. Phys.: Condens. Matter, vol. 24, pp. 436004, 2012.
  • [11] E. Vatansever, “Monte Carlo simulation of dynamic phase transitions and frequency dispersions of hysteresis curves in core/shell ferrimagnetic cubic nanoparticle” Phys. Lett. A, vol. 381, pp. 1535-1542, 2017.
  • [12] E. Vatansever and H. Polat, “Dynamic phase transitions in a ferromagnetic thin film system: A Monte Carlo simulation study” Thin Solid Films, vol. 589, pp. 778-782, 2015.
  • [13] M. Acharyya, “Nonequilibrium phase transition in the kinetic Ising model: Divergences of fluctuations and responses near the transition point” Phys. Rev. E, vol. 56, pp. 1234, 1997.
  • [14] M. Acharyya, “Nonequilibrium phase transition in the kinetic Ising model: Critical slowing down and the specific-heat singularity” Phys. Rev. E, vol. 56, pp. 2407, 1997.
  • [15] R.A. Gallardo, O. Idigoras, P. Landeros and A. Berger, “Mean field theory of dynamic phase transition in ferromagnets” Physica B, vol. 407, pp. 1377-1380, 2012.
  • [16] Y.-L. He and G.-C. Wang, “Observation of dynamic scaling of magnetic hysteresis in ultrathin ferromagnetic Fe/Au(001) films” Phys. Rev. Lett. vol. 70, pp. 2336-2339, 1993.
  • [17] D.T. Robb, Y.H. Xu, O. Hellwig, J. McCord, A. Berger, M.A. Novotny and P.A. Rikvold, “Evidence for a dynamic phase transition in [Co/Pt]3 magnetic multilayers” Phys. Rev. B., vol. 78, pp. 134422 2008.
  • [18] J.-S. Suen and J.L. Erskine, “Magnetic hysteresis dynamics: Thin p(1X1) Fe films on flat and stepped W(110)” Phys. Rev. Lett., vol. 78, pp. 3567 1997.
  • [19] A. Berger, O. Idigoras and P. Vavassori, “Transient behaviour of the dynamically ordered phase in uniaxial cobalt films” Phys. Rev. Lett., vol. 111, pp. 190602, 2013.
  • [20] P. Riego, P. Vavassori and A. Berger, “Metamagnetic anomalies near dynamic phase transitions” Phys. Rev. Lett., vol. 118, pp. 117202 2017.
  • [21] M. Acharyya and A. Halder, “Blume-Capel ferromagnet driven by propagating and standing magnetic field wave: Dynamical modes and nonequilibrium phase transition” J. Magn. Magn. Mater. vol. 426, pp. 53-59, 2017.
  • [22] M. Acharyya, “Polarized electromagnetic wave propagation through the ferromagnet: Phase boundary of dynamic phase transition”Acta Phys. Pol. B, vol. 45, pp. 1027-1036, 2014.
  • [23] M. Acharyya, “Dynamic symmetry breaking breathing and spreading transitions in ferromagnetic film irradiated by spherical electromagnetic wave” J. Magn. Magn. Mater., vol. 354, pp. 349-354, 2014.
  • [24] M. Acharyya, “Ising metamagnet driven by propagating magnetic field wave: Nonequilibrium phases and transitions” J. Magn. Magn. Mater., vol. 382, pp. 206-210, 2015.
  • [25] M.I. Irshad, F. Ahmad and N.M. Mohamed, “A reviews on nanowires as an alternatives high density magnetic storage media” AIP Conf. Proc., vol. 1482, pp. 625-632, 2012.
  • [26] Y.P. Ivanov, A. Chuvilin, S. Lopatin and J. Kosel, “Modulated magnetic nanowires for controlling domain wall motion: Towards 3D magnetic memories” ACS Nano, vol. 10, pp. 5326, 2016.
  • [27] Y.P. Ivanov, A. Alfadhel, M. Alnassar, J.E. Perez, M. Vazquez, A. Chuvilin and J. Kosel, “Tunable magnetic nanowires for biomedical and harsh environment applications” J. Sci. Rep., vol. 6, pp. 24189, 2016.
  • [28] B. Deviren, E. Kantar and M. Keskin, “Dynamic phase transition in cylindrical Ising nanowire under a time dependent oscillating magnetic field” J. Magn. Magn. Mater., vol. 324, pp. 2163-2170, 2012.
  • [29] B. Deviren, M. Ertaş and M. Keskin, “Dynamic magnetizations and dynamic phase transitions in a transverse cylindrical Ising nanowire” Phys. Scr., vol. 85, pp. 055001, 2012.
  • [30] E. Kantar, B. Deviren and M. Keskin, “Magnetic properties of mixed Ising nanoparticles with core-shell structure” Eur. Phys. J. B., vol. 86, pp. 253, 2013.
  • [31] M. Ertaş and Y. Kocakaplan, “Dynamic behaviors of the hexagonal Ising nanowire” Phys. Lett. A, vol. 378, pp. 845-850, 2014.
  • [32] B. Deviren and M. Keskin, “Thermal behaviour of dynamic magnetizations, hysteresis loop areas and correlations of a cylindrical Ising nanotube in an oscillating magnetic field within the effective field theory and the Glauber type stochastic dynamic approach” Phys. Lett. A, vol. 376, pp. 1011-1019, 2012.
  • [33] B. Deviren, Y. Sener, M. Keskin, “Dynamic magnetic properties of the kinetic cylindrical Ising nanotube” Physica A, vol. 392, pp. 3969-3983, 2013.
  • [34] E. Kantar, M. Ertaş and M. Keskin, “Dynamic phase diagrams of a cylindrical nanowire in the presence of a time dependent magnetic field” J. Magn. Magn. Mater., vol. 361, pp. 61, 2014.
  • [35] Y. Yüksel, “Monte Carlo study of magnetization dynamics in uniaxial ferromagnetic nanowires in the presence of oscillating and biased magnetic fields” Phys. Rev. E, vol. 91, pp. 032149, 2015.
  • [36] Y. Yüksel, “Dynamic phase transition phenomena and magnetization reversal process in uniaxial ferromagnetic nanowires” J. Magn. Magn. Mater., vol. 389, pp. 34-39, 2015.
  • [37] K. Binder, Monte Carlo Methods in Statistical Physics, Springer, Berlin, 1979.
  • [38] M.E.J. Newman and G.T. Barkema, Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford, 2001.
  • [39] Z.D. Vatansever and E. Vatansever, “Finite temperature magnetic phase transition features of the quenched disordered binary alloy cylindrical nanowire” J. Alloys Compd. vol. 701, pp. 288, 2017.
  • [40] A. Halder and M. Acharyya, “Standing magnetic wave on Ising ferromagnet: Nonequilibrium phase transition” J. Magn. Magn. Mater., vol. 420, pp. 290, 2016.
Birincil Dil en
Konular Mühendislik ve Temel Bilimler
Yayımlanma Tarihi Mayıs
Dergi Bölümü Makaleler
Yazarlar

Yazar: Erol Vatansever
Kurum: DOKUZ EYLÜL ÜNİVERSİTESİ
Ülke: Turkey


Bibtex @araştırma makalesi { apjes350170, journal = {Akademik Platform Mühendislik ve Fen Bilimleri Dergisi}, issn = {}, eissn = {2147-4575}, address = {Akademik Platform}, year = {2018}, volume = {6}, pages = {72 - 80}, doi = {10.21541/apjes.350170}, title = {Dynamic phase transition features of the cylindrical nanowire driven by a propagating magnetic field}, key = {cite}, author = {Vatansever, Erol} }
APA Vatansever, E . (2018). Dynamic phase transition features of the cylindrical nanowire driven by a propagating magnetic field. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, 6 (2), 72-80. DOI: 10.21541/apjes.350170
MLA Vatansever, E . "Dynamic phase transition features of the cylindrical nanowire driven by a propagating magnetic field". Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 6 (2018): 72-80 <http://dergipark.gov.tr/apjes/issue/38735/350170>
Chicago Vatansever, E . "Dynamic phase transition features of the cylindrical nanowire driven by a propagating magnetic field". Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 6 (2018): 72-80
RIS TY - JOUR T1 - Dynamic phase transition features of the cylindrical nanowire driven by a propagating magnetic field AU - Erol Vatansever Y1 - 2018 PY - 2018 N1 - doi: 10.21541/apjes.350170 DO - 10.21541/apjes.350170 T2 - Akademik Platform Mühendislik ve Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 72 EP - 80 VL - 6 IS - 2 SN - -2147-4575 M3 - doi: 10.21541/apjes.350170 UR - http://dx.doi.org/10.21541/apjes.350170 Y2 - 2018 ER -
EndNote %0 Akademik Platform Mühendislik ve Fen Bilimleri Dergisi Dynamic phase transition features of the cylindrical nanowire driven by a propagating magnetic field %A Erol Vatansever %T Dynamic phase transition features of the cylindrical nanowire driven by a propagating magnetic field %D 2018 %J Akademik Platform Mühendislik ve Fen Bilimleri Dergisi %P -2147-4575 %V 6 %N 2 %R doi: 10.21541/apjes.350170 %U 10.21541/apjes.350170
ISNAD Vatansever, Erol . "Dynamic phase transition features of the cylindrical nanowire driven by a propagating magnetic field". Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 6 / 2 (Ağustos 2018): 72-80. http://dx.doi.org/10.21541/apjes.350170