Cilt 18, Sayı 2, Sayfalar 323 - 345 2017-06-30

Data-Driven Trajectory Uncertainty Quantification For Climbing Aircraft To Improve Ground-Based Trajectory Prediction

Mevlüt Uzun [1] , Emre Koyuncu [2]

151 135

Efficient trajectory prediction tools will be the crucial functions in future trajectory-based operations (TBO). In addition to win and controller actions, uncertainties in climbing flights are major components of prediction errors in a flight trajectory. Due to the operational concerns, aircraft take-off weight and climb speed intent, which are key performance parameters that define climb profiles, is not entirely available to round-based trajectory prediction infrastructure. In the scope of air traffic flow management, sector entry and exit times, including where the climb ends and descending starts, are the main inputs for demand- capacity balancing processes. In this work, we have focused on uncertainties over climb trajectory to quantify and analyze their impact on climb times to cruise altitudes. We have used model-driven data statistical approaches through aircraft flight record data sets (i.e. QAR). As result of this analyze, probabilistic definitions are generated for aircraft take-off weight and speed intent. The regression between these climb parameters and flight distance is acquired to reduce the uncertainty at strategical level. Moreover, reducing climb uncertainty through adaptive uncertainty reduction is also demonstrated at the tactical level of flight. Through the simulations, the impact of reducing the uncertainty in aircraft mass on climb time is illustrated. 

Flight Trajectory Uncertainty,Aircraft Climb,Uncertainty Reduction,Aircraft Performance
  • • Single European Sky ATM Research (SESAR) Consortium. “The ATM Target Concept (D3)”, 2007.
  • • Federal Aviation Administration, Office of Aviation Policy and Plans, “FAA Aerospace Forecast: Fiscal Years 2012-2032,”, Mar. 2012.
  • • ICAO, Trajectory Based Operations Concept Document (TBOCD), Air Traffic Management Requirements And Performance Panel (ATMRPP), ATMRPP-WG/28-WP/652, 17/02/15
  • • Green, M. S., Mondoloni, S., Paglione, M., Swierstra, S., Irvine, R. and Garcia-Avello, C., White th Paper, “Common Methodology and Resources for the Validation and Improvement of Trajectory Prediction Capabilities”, 2006
  • • Eurocontrol Experimental Centre, “ADAPT2: Aircraft Data Aiming at Predicting the Trajectory”, Dec. 2009
  • • Coppenbarger, R. A., “Climb Trajectory Prediction Enhancement Using Airline Flight-Planning Information”, AIAA-99-4147, 1999
  • • McNally, D. and Thipphavong, D., “Automated Separation Assurance in the Presence of Uncertainty”, 26th International Congress of the Aeronautical Sciences, 2008
  • • Thipphavong, D., “Analysis of a Multi-Trajectory Conflict Detection Alorithm for Climbing Flights”, 9th AIAA Aviation Technology Integration and Operations Conference, September 2009, Hilton Head, South Carolina
  • • Casado, E., Goodchild, C. and Vilaplana, M., “Sensitivity of Trajectory Prediction Accuracy to Aircraft Performance Uncertainty”, AIAA Infotech at Aerospace Conference, August 2013, Boston MA
  • • Margellos, K and Lygeros, J., “Toward 4D Trajectory Management in Air Traffic Control: A Study Based on Monte Carlo Simulation and Reachability Analysis”, IEEE Transactions on Control Systems Technology, Vol. 21, no. 5, September 2013
  • • Liu, W and Hwang, I., “Probabilistic Trajectory Prediction and Conflict Detection for Air Traffic Control”, Journal of Guidance, Control and Dynamics, Vol. 34, No. 6, December 2011
  • • Knorr, D and Walter, L., “Trajectory Uncertainty and the Impact on Sector Complexity and Workload”, SESAR Innovation Days, December 2011
  • • Kim, J., Tandale, M. and Menon P. K., “Air-Traffic Uncertainty Models for Queuing Analysis”, 9th AIAA Aviation Technology, Integration and Operations Conference, September 2009, Hilton Head, South Carolina
  • • Mueller, T. K., Sorensen J. A. and Couluris G. J., “Strategic Aircraft Trajectory Prediction Uncertainty and Statistical Sector Traffic Load Modeling”, AIAA Guidance, Navigation and Control Conference, August 2002, Monterrey, California
  • • Chan, W., Bach, R. and Walton, J., “Improving and Validating CTAS Performance Models”, AIAA Guidance, Navigation and Control Conference, August 2000, Denver, CO
  • • Bronsvoort, J., McDonald, G., Paglione, M., Young, M. C., Fabian A., Boucquey, J and Garcia-Avello, C., “Demonstration of Improved Trajectory Prediction Using Future Air Navigation Systems”, Air Traffic Control Quarterly, Vol. 21(4), pp. 355-381, 2013
  • • Konyak, A. M., Doucett, S., Safa-Bakhsh, R., Gallo, E. and Parks P. C., “Improving Ground-Based Trajectory Prediction through Communication of Aircraft Intent”, AIAA Guidance, Navigation and Control Conference, August 2009, Chicago, Illinois
  • • Thipphavong, D., “Reducing Aircraft Climb Trajectory Prediction Errors with Top-of-Climb Data”, AIAA Guidance, Navigation and Control Conference, August 2013, Boston, MA
  • • Mondoloni, S. and Liang, D., “Improving Trajectory Forecasting Through Adaptive Filtering Techniques”, 5th USA/Europe ATM R&D Seminar, June 2003
  • • Schultz, C. A., Thipphavong, D. and Erzberger, H., “Adaptive Trajectory Prediction Algorithm for Climbing Flights”, AIAA Guidance, Navigation, and Control Conference, 2012
  • • Alligier, R., Gianazza, D. and Durand, N., “Machine Learning Applied to Airspeed Prediction During Climb”, Conference, 2015
  • • Alligier, R., Gianazza, D. and Durand, N., “Machine Learning and Mass Estimation Methods for Ground Based Aircraft Climb Prediction”, Intelligent Transportation Systems, 2015
  • • Alligier, R., Gianazza, D. and Durand, N., “Learning the Aircraft Mass and Thrust to Improve the Ground-Based Trajectory Prediction of Climbing Flights”, Transportation Research Part C, August 2013
  • • Eurocontrol, Specification for Trajectory Prediction, 2010
  • • FAA/Eurocontrol Cooperative R&D, “Common Trajectory Prediction-Related Terminology”, Action Plan 16: Common Trajectory Prediction Capability, October 2004
  • • Paglione, M. M., Ryan, F. H., Oaks, D. R., Summerill, S. J. and Cale, L. M., “Trajectory Prediction Accuracy Report: User Request Evaluation Tool (URET)/ Center-TRACON Automation System (CTAS)”, FAA Technical Document, May 1999
  • • Eurocontrol, “System for traffic Assignment and Analysis at a Macroscopic Level (SAAM) Reference Manual”, July 2016
  • • Mondoloni, S., “Aircraft Trajectory Prediction Errors: Including a Summary of Error Sources and Data”, FAA/Eurocontrol Action Plan 16, Common Trajectory Prediction Capabilities, July 2006
  • • A. Nuic, C. Poinsot, M. Iagaru, E. Gallo, F. A. Navarro, and C. Querejeta. Advanced Aircraft Performance Modeling for ATM: Enhancements to the Bada Model. In Digital Avionics Systems Conference, 2005. DASC 2005. The 24th, pages 2–2.B.4–1. IEEE, 2005.
  • • AIRBUS Group, Getting To Grips With The Cost Index, Issue II - May 1998
  • • Bill Roberson (BOEING), Fuel Conservation Strategies: Cost Index Explained, BOEING AERO qrt_2.07, 2007
  • • Eurocontrol. User Manual for the Base of Aircraft Data (BADA) Family 4. EEC TechnicalScientific Report No. --, Apr. 2014.
  • • Murphy, K., “Machine Learning: A Probabilistic Perspective”, The MIT Press, Cambridge Massachusetts, 2012
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Araştırma Makalesi
Yazarlar

Yazar: Mevlüt Uzun
E-posta: emre.koyuncu@itu.edu.tr
Kurum: ISTANBUL TEKNIK UNIV
Ülke: Turkey


Yazar: Emre Koyuncu
E-posta: emre.koyuncu@itu.edu.tr
Kurum: ISTANBUL TEKNIK UNIV
Ülke: Turkey


Bibtex @araştırma makalesi { aubtda270074, journal = {Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik}, issn = {1302-3160}, address = {Anadolu Üniversitesi}, year = {2017}, volume = {18}, pages = {323 - 345}, doi = {10.18038/aubtda.270074}, title = {Data-Driven Trajectory Uncertainty Quantification For Climbing Aircraft To Improve Ground-Based Trajectory Prediction}, language = {en}, key = {cite}, author = {Uzun, Mevlüt and Koyuncu, Emre} }
APA Uzun, M , Koyuncu, E . (2017). Data-Driven Trajectory Uncertainty Quantification For Climbing Aircraft To Improve Ground-Based Trajectory Prediction. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik, 18 (2), 323-345. DOI: 10.18038/aubtda.270074
MLA Uzun, M , Koyuncu, E . "Data-Driven Trajectory Uncertainty Quantification For Climbing Aircraft To Improve Ground-Based Trajectory Prediction". Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik 18 (2017): 323-345 <http://dergipark.gov.tr/aubtda/issue/29641/270074>
Chicago Uzun, M , Koyuncu, E . "Data-Driven Trajectory Uncertainty Quantification For Climbing Aircraft To Improve Ground-Based Trajectory Prediction". Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik 18 (2017): 323-345
RIS TY - JOUR T1 - Data-Driven Trajectory Uncertainty Quantification For Climbing Aircraft To Improve Ground-Based Trajectory Prediction AU - Mevlüt Uzun , Emre Koyuncu Y1 - 2017 PY - 2017 N1 - doi: 10.18038/aubtda.270074 DO - 10.18038/aubtda.270074 T2 - Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik JF - Journal JO - JOR SP - 323 EP - 345 VL - 18 IS - 2 SN - 1302-3160-2146-0205 M3 - doi: 10.18038/aubtda.270074 UR - http://dx.doi.org/10.18038/aubtda.270074 Y2 - 2017 ER -
EndNote %0 Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik Data-Driven Trajectory Uncertainty Quantification For Climbing Aircraft To Improve Ground-Based Trajectory Prediction %A Mevlüt Uzun , Emre Koyuncu %T Data-Driven Trajectory Uncertainty Quantification For Climbing Aircraft To Improve Ground-Based Trajectory Prediction %D 2017 %J Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik %P 1302-3160-2146-0205 %V 18 %N 2 %R doi: 10.18038/aubtda.270074 %U 10.18038/aubtda.270074