Yıl 2018, Cilt 19, Sayı 2, Sayfalar 303 - 315 2018-03-31

Dynamic k Neighbor Selection for Collaborative Filtering

Halil Zeybek [1] , Cihan KALELİ [2]

116 110

Collaborative filtering is a commonly used method to reduce information overload. It is widely used in recommendation systems due to its simplicity. In traditional collaborative filtering, recommendations are produced based on similarities among users/items. In this approach, the most correlated k neighbors are determined, and a prediction is computed for each user/item by utilizing this neighborhood. During recommendation process, a predefined k value as a number of neighbors is used for prediction processes.  In this paper, we analyze the effect of selecting different k values for each user or item. For this purpose, we generate a model that determines k values for each user or item at the off-line time. Empirical outcomes show that using the dynamic k values during the k-nn algorithm leads to more favorable recommendations compared to a constant k value.

k-nearest-neighbor; Collaborative filtering; Dynamic k; Accuracy.
  • [1] White T. Hadoop the definitive guide. O'Reilly US, 2015.
  • [2] Ricci F, Rokach L, Shapira B. Recommender Systems Handbook. Springer US, 2011.
  • [3] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 2005; 17.6: pp. 734-749.
  • [4] Bilge A, Yargıç A. Improving accuracy of muti-criteria collaborative filtering by normalizing user ratings. Anadolu University Journal of Science and Technology a- applied science and engineering, 2017; 18.1: pp. 225-237
  • [5] Keller JM, Gray MR, Givens JA. A fuzzy k-nearest neighbor algorithm. IEEE transactions on systems, man, and cybernetics,1985; 15.4. pp. 580-585
  • [6] Herlocker JL, Konstan JA, Borchers A, Riedl J. An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 1999. pp. 230-237.
  • [7] Su X, Khoshgoftaar TM. A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009; 2009: 4.
  • [8] Adomavicius G, Manouselis N, Kwon Y. Multi-criteria recommender systems. In: Recommender Systems Handbook. Springer US, 2011. pp.769-803.
  • [9] Jannach D, Karakaya Z, Gedikli F. Accuracy improvements for multi-criteria recommender systems. In: Proceedings of the 13th ACM Conference on Electronic Commerce. ACM, 2012. pp. 674-689.
  • [10] Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J. GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. ACM, 1994. pp. 175-186.
  • [11] Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proc. of the 14th Annual Conf. on Uncertainty in Artificial Intelligence,1998. pp. 43–52.
  • [12] Delgado, J., Ishii, N.: Memory-based weighted majority prediction for recommender systems. In: Proc. of the ACM SIGIR’99 Workshop on Recommender Systems (1999)
  • [13] Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: KDD’08: Proceeding of the 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 426–434. ACM, New York, NY, USA (2008)
  • [14] Kaleli C. An entropy-based neighbor selection approach for collaborative filtering. Knowledge-based Systems, 2014. pp. 273-280.
  • [15] J. Herlocker, J.A. Konstan, J. Riedl, An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms, Inform. Retrieval 5 (4) (2002) 287–310.
  • [16] T.-H. Kim, S.-B. Yang, An effective threshold-based neighbor selection in collaborative filtering, in: Proceedings of the 29th European conference on IR Research. ECIR’07, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 712–715.
  • [17] Z. Liang, X. Bo, G. Jun, An approach of selecting right neighbors for collaborative filtering, in: Proceedings of the Innovative Computing, Information, and Control (ICICIC), 2009 Fourth International Conference on, 2009, pp. 1057–1060.
  • [18] Y. Koren, Factor in the neighbors: scalable and accurate collaborative filtering, ACM Trans. Knowl. Discovery Data 4 (1) (2010) 1–24.
  • [19]B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation algorithms, in: Proceedings of the 10th International Conference on World Wide Web, 2001, pp. 285–295.
  • [20] C.C. Aggarwal, Recommender Systems: The Textbook. Springer,2016.
  • [21] B.Sarwar, J. Konstan, A. Borchers, J. Herlocker, B. Miller, J.Riedl, Using filtering agents to improve prediction quality in the grouplens research collaborative filtering systems, Proceedings of 1998 Conference on Computer Supported Collaborative Work, 1998
  • [22] U. Shardanand, P. Maes, Social information filtering, Proceedings of ACH CHI’95 Conference on Human Factors in Computing Systems, 1995, pp. 210-217
Birincil Dil en
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Araştırma Makalesi
Yazarlar

Yazar: Halil Zeybek
Ülke: Turkey


Yazar: Cihan KALELİ
Ülke: Turkey


Bibtex @araştırma makalesi { aubtda346407, journal = {Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik}, issn = {1302-3160}, eissn = {2146-0205}, address = {Anadolu Üniversitesi}, year = {2018}, volume = {19}, pages = {303 - 315}, doi = {10.18038/aubtda.346407}, title = {Dynamic k Neighbor Selection for Collaborative Filtering}, key = {cite}, author = {Zeybek, Halil and KALELİ, Cihan} }
APA Zeybek, H , KALELİ, C . (2018). Dynamic k Neighbor Selection for Collaborative Filtering. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik, 19 (2), 303-315. DOI: 10.18038/aubtda.346407
MLA Zeybek, H , KALELİ, C . "Dynamic k Neighbor Selection for Collaborative Filtering". Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik 19 (2018): 303-315 <http://dergipark.gov.tr/aubtda/issue/33078/346407>
Chicago Zeybek, H , KALELİ, C . "Dynamic k Neighbor Selection for Collaborative Filtering". Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik 19 (2018): 303-315
RIS TY - JOUR T1 - Dynamic k Neighbor Selection for Collaborative Filtering AU - Halil Zeybek , Cihan KALELİ Y1 - 2018 PY - 2018 N1 - doi: 10.18038/aubtda.346407 DO - 10.18038/aubtda.346407 T2 - Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik JF - Journal JO - JOR SP - 303 EP - 315 VL - 19 IS - 2 SN - 1302-3160-2146-0205 M3 - doi: 10.18038/aubtda.346407 UR - http://dx.doi.org/10.18038/aubtda.346407 Y2 - 2018 ER -
EndNote %0 Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik Dynamic k Neighbor Selection for Collaborative Filtering %A Halil Zeybek , Cihan KALELİ %T Dynamic k Neighbor Selection for Collaborative Filtering %D 2018 %J Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik %P 1302-3160-2146-0205 %V 19 %N 2 %R doi: 10.18038/aubtda.346407 %U 10.18038/aubtda.346407
ISNAD Zeybek, Halil , KALELİ, Cihan . "Dynamic k Neighbor Selection for Collaborative Filtering". Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik 19 / 2 (Mart 2018): 303-315. http://dx.doi.org/10.18038/aubtda.346407