Yıl 2018, Cilt 19, Sayı 1, Sayfalar 206 - 218 2018-03-31

Feature Selection and Comparison of Classification Algorithms for Intrusion Detection

Sevcan Yılmaz Gündüz [1] , Muhammet Nurullah ÇETER [2]

149 170

The increase in the frequency of use of the internet causes the attacks on computer networks to increase. This also increases the importance of intrusion detection systems. In this paper, KDD Cup 99 dataset is used to classification of the network attacks. Four different classification algorithms were used and the results were compared. These algorithms were multilayer perceptron network, decision trees, fuzzy unordered rule induction algorithm (FURIA) and support vector machines. The most successful algorithm in this dataset found as FURIA. As a second part of this study, the most important feature sets were found by correlation-based feature selection and best first search algorithm. Then, the results of classification algorithms were compared with these new feature sets according to performance of the algorithms.  

KDD Cup 99 Dataset, Support Vector Machines, FURIA, Intrusion Detection System
  • S. J. Horng, M. Y. Su, Y. H. Chen, T. W. Kao, R. J. Chen, J. L. Lai, et al., "A novel intrusion detection system based on hierarchical clustering and support vector machines," Expert Systems with Applications, vol. 38, pp. 306-313, Jan 2011.
  • M. S. Abadeh, H. Mohamadi, and J. Habibi, "Design and analysis of genetic fuzzy systems for intrusion detection in computer networks," Expert Systems with Applications, vol. 38, pp. 7067-7075, Jun 2011.
  • L. Koc, T. A. Mazzuchi, and S. Sarkani, "A network intrusion detection system based on a Hidden Naive Bayes multiclass classifier," Expert Systems with Applications, vol. 39, pp. 13492-13500, Dec 15 2012.
  • S. Mukherjee and N. Sharma, "Intrusion Detection using Naive Bayes Classifier with Feature Reduction," 2nd International Conference on Computer, Communication, Control and Information Technology (C3it-2012), vol. 4, pp. 119-128, 2012.
  • V. Bolon-Canedo, N. Sanchez-Marono, and A. Alonso-Betanzos, "Feature selection and classification in multiple class datasets: An application to KDD Cup 99 dataset," Expert Systems with Applications, vol. 38, pp. 5947-5957, May 2011.
  • U. Ravale, N. Marathe, and P. Padiya, "Feature Selection Based Hybrid Anomaly Intrusion Detection System Using K Means and RBF Kernel Function," in International Conference on Advanced Computing Technologies and Applications, 2015, pp. 428-435.
  • M. C. Belavagi and B. Muniyal, "Performance Evaluation of Supervised Machine Learning Algorithms for Intrusion Detection," in Twelfth International Multi-Conference on Information Processing-2016, Bangalore, India, 2016, pp. 117-123.
  • A. H. Alamleh, "Network Intrusion Classification Using Data Mining Techniques," Masters Masters Thesis, Computer Science, Zarqa University, Jordan, 2015.
  • S. S. Haykin, Neural networks : a comprehensive foundation, 2nd ed. Upper Saddle River, N.J.: Prentice Hall, 1999.
  • J. Han and M. Kamber, Data mining : concepts and techniques. San Francisco: Morgan Kaufmann Publishers, 2001.
  • J. Huhn and E. Hullermeier, "FURIA: an algorithm for unordered fuzzy rule induction," Data Mining and Knowledge Discovery, vol. 19, pp. 293-319, Dec 2009.
  • C. Cortes and V. Vapnik, "Support-Vector Networks," Machine Learning, vol. 20, pp. 273-297, Sep 1995.
  • V. N. Vapnik, Statistical learning theory. New York ; Chichester England: Wiley, 1998.
  • University of California. (1999, October 8). KDD Cup 1999 Data. Available: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
  • S. W. Lin, K. C. Ying, C. Y. Lee, and Z. J. Lee, "An intelligent algorithm with feature selection and decision rules applied to anomaly intrusion detection," Applied Soft Computing, vol. 12, pp. 3285-3290, Oct 2012.
  • M. Tavallaee, E. Bagheri, and W. Lu, "A detailed analysis of the KDD CUP 99 data set," presented at the IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 2009.
  • I.H.Witten, E.Frank, and M. A. Hall, Data Mining Practical Machine Leanrning Tools and Techniques: Morgan Kouffman.
  • M. A. Hall, "Correlation-based Feature Selection for Machine Learning," Department of Computer Science, The University of Waikato, 1999.
Birincil Dil en
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Araştırma Makalesi
Yazarlar

Yazar: Sevcan Yılmaz Gündüz (Sorumlu Yazar)
Kurum: Anadolu University
Ülke: Turkey


Yazar: Muhammet Nurullah ÇETER
Kurum: Anadolu University
Ülke: Turkey


Bibtex @araştırma makalesi { aubtda356705, journal = {Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik}, issn = {1302-3160}, eissn = {2146-0205}, address = {Anadolu Üniversitesi}, year = {2018}, volume = {19}, pages = {206 - 218}, doi = {10.18038/aubtda.356705}, title = {Feature Selection and Comparison of Classification Algorithms for Intrusion Detection}, key = {cite}, author = {Yılmaz Gündüz, Sevcan and ÇETER, Muhammet Nurullah} }
APA Yılmaz Gündüz, S , ÇETER, M . (2018). Feature Selection and Comparison of Classification Algorithms for Intrusion Detection. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik, 19 (1), 206-218. DOI: 10.18038/aubtda.356705
MLA Yılmaz Gündüz, S , ÇETER, M . "Feature Selection and Comparison of Classification Algorithms for Intrusion Detection". Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik 19 (2018): 206-218 <http://dergipark.gov.tr/aubtda/issue/36292/356705>
Chicago Yılmaz Gündüz, S , ÇETER, M . "Feature Selection and Comparison of Classification Algorithms for Intrusion Detection". Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik 19 (2018): 206-218
RIS TY - JOUR T1 - Feature Selection and Comparison of Classification Algorithms for Intrusion Detection AU - Sevcan Yılmaz Gündüz , Muhammet Nurullah ÇETER Y1 - 2018 PY - 2018 N1 - doi: 10.18038/aubtda.356705 DO - 10.18038/aubtda.356705 T2 - Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik JF - Journal JO - JOR SP - 206 EP - 218 VL - 19 IS - 1 SN - 1302-3160-2146-0205 M3 - doi: 10.18038/aubtda.356705 UR - http://dx.doi.org/10.18038/aubtda.356705 Y2 - 2018 ER -
EndNote %0 Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik Feature Selection and Comparison of Classification Algorithms for Intrusion Detection %A Sevcan Yılmaz Gündüz , Muhammet Nurullah ÇETER %T Feature Selection and Comparison of Classification Algorithms for Intrusion Detection %D 2018 %J Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik %P 1302-3160-2146-0205 %V 19 %N 1 %R doi: 10.18038/aubtda.356705 %U 10.18038/aubtda.356705
ISNAD Yılmaz Gündüz, Sevcan , ÇETER, Muhammet Nurullah . "Feature Selection and Comparison of Classification Algorithms for Intrusion Detection". Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik 19 / 1 (Mart 2018): 206-218. http://dx.doi.org/10.18038/aubtda.356705