Yıl 2018, Cilt 6, Sayı 2, Sayfalar 15 - 19 2018-04-29

FPGA-based ANN Design for Detecting Epileptic Seizure in EEG Signal

BARIS KARAKAYA [1] , TURGAY KAYA [2] , ARIF GULTEN [3]

96 138

This study aims to represent an FPGA (Field Programmable Gate Array) design of Artificial Neural Network (ANN) for Electroencephalography (EEG) signal processing in order to detect epileptic seizure. For analyzing brain’s electrical activity, feedforward ANN model is used for classification of EEG signals. The designed ANN output layer makes a decision whether the person has epilepsy or not. In the proposed system, the ANN model is programmed and simulated on Xilinx ISE editor via computer and then, EEG signal data are transferred to FPGA-based ANN emulator core. The Core is trained on data which are patient’s data and healthy person’s data. After training, test data is loaded to ANN Emulator Core to detect any epileptic seizure of person’s EEG signal. The main advantage of FPGA in the system is to improve speed and accuracy for epileptic seizure detection.

ANN, EEG, FPGA, Epilepsy
  • [1] J. Gotman, “Automatic recognition of epileptic seizures in the EEG”, Electroencephalography and Clinical Neurophysiology, Vol. 54, No. 5, 1982, pp. 530-540. [2] D., Gür, T. Kaya, M. Türk, “Analysis of Normal and Epileptic EEG Signals with Filtering Methods”, 2014 IEEE 22nd Signal Processing and Communications Applications Conference, SIU 2014, pp. 1877-1880. [3] S. Güzel, T. Kaya, H. Güler, “LabVIEW-Based Analysis of EEG Signals in Determination of Sleep Stages”, 2015 IEEE 23nd Signal Processing and Communications Applications Conference, SIU 2015, 2015. [4] H. Adeli, S. Ghosh-Dastidar, N. Dadmehr, “A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy”, IEEE Trans. Biomed. Eng., Vol. 54, 2007, pp. 205-211. [5] M.M. Shaker, “EEG Waves Classifier using Wavelet Transform and Fourier Transform”, Journal of Medical, Pharmaceutical Science and Engineering, Vol. 1, No. 3, 2007. [6] T. Kaya, M.C. Ince, “Design of FIR Filter Using Modeled Window Function with Helping of Artificial Neural Networks”, Journal of The Faculty of Engineering and Architecture of Gazi University, Vol. 27, No. 3, 2012, 599-606. [7] R. Schuyler, A. White, K. Staley, K.J. Cios, “Epileptic seizure detection”, IEEE Eng. Med. Biol. Mag., 2007, pp. 74-81. [8] A. Ersöz, S. Özşen, “Uyku EEG Sinyalinin Yapay Sinir Ağ Modeli ile Sınıflandırılması”, Elektrik Elektronik Bilgisayar Sempozyumu, Elazığ, 2011. [9] S.M. Eka, M. Fajar, T. Iqbal, W. Jatmiko, I.M. Agus, “FNGLVQ FPGA design for sleep stages classification based on electrocardiogram signal”, 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012, pp. 2711-2716. [10] A.G. Blaiech, K. Ben Khalifa, M. Boubaker, M.H. Bedoui, “Multi-width fixed-point coding based on reprogrammable hardware implementation of a multi-layer perceptron neural network for alertness classification”, 2010 10th International Conference on Intelligent Systems Design and Applications (ISDA), 2010, pp. 610-614. [11] American Clinical Neurophysiology Society, “Guideline 8: guidelines for recording clinical EEG on digital media”, J Clin Neurophysiol, Vol. 23, No. 2, 2006, pp. 122–124. [12] B. Karakaya, R. Yeniceri, M.E. Yalcın, “Wave computer core using fixed-point arithmetic”, 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2015, pp. 1514-1517. [13] E. Özpolat, B. Karakaya, T. Kaya, A. Gülten, “FPGA-based digital Filter Design for Biomedical Signal”, 2016 XII International Conference on Perspective Technologies and Methods in MEMs Design (MEMSTECH), 2016, pp. 70-73.
Birincil Dil en
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Araştırma Makalesi
Yazarlar

Yazar: BARIS KARAKAYA

Yazar: TURGAY KAYA

Yazar: ARIF GULTEN

Bibtex @araştırma makalesi { bajece419544, journal = {Balkan Journal of Electrical and Computer Engineering}, issn = {2147-284X}, address = {Balkan Yayın}, year = {2018}, volume = {6}, pages = {15 - 19}, doi = {10.17694/bajece.419544}, title = {FPGA-based ANN Design for Detecting Epileptic Seizure in EEG Signal}, key = {cite}, author = {KAYA, TURGAY and KARAKAYA, BARIS and GULTEN, ARIF} }
APA KARAKAYA, B , KAYA, T , GULTEN, A . (2018). FPGA-based ANN Design for Detecting Epileptic Seizure in EEG Signal. Balkan Journal of Electrical and Computer Engineering, 6 (2), 15-19. DOI: 10.17694/bajece.419544
MLA KARAKAYA, B , KAYA, T , GULTEN, A . "FPGA-based ANN Design for Detecting Epileptic Seizure in EEG Signal". Balkan Journal of Electrical and Computer Engineering 6 (2018): 15-19 <http://dergipark.gov.tr/bajece/issue/36835/419544>
Chicago KARAKAYA, B , KAYA, T , GULTEN, A . "FPGA-based ANN Design for Detecting Epileptic Seizure in EEG Signal". Balkan Journal of Electrical and Computer Engineering 6 (2018): 15-19
RIS TY - JOUR T1 - FPGA-based ANN Design for Detecting Epileptic Seizure in EEG Signal AU - BARIS KARAKAYA , TURGAY KAYA , ARIF GULTEN Y1 - 2018 PY - 2018 N1 - doi: 10.17694/bajece.419544 DO - 10.17694/bajece.419544 T2 - Balkan Journal of Electrical and Computer Engineering JF - Journal JO - JOR SP - 15 EP - 19 VL - 6 IS - 2 SN - 2147-284X- M3 - doi: 10.17694/bajece.419544 UR - http://dx.doi.org/10.17694/bajece.419544 Y2 - 2017 ER -
EndNote %0 Balkan Journal of Electrical and Computer Engineering FPGA-based ANN Design for Detecting Epileptic Seizure in EEG Signal %A BARIS KARAKAYA , TURGAY KAYA , ARIF GULTEN %T FPGA-based ANN Design for Detecting Epileptic Seizure in EEG Signal %D 2018 %J Balkan Journal of Electrical and Computer Engineering %P 2147-284X- %V 6 %N 2 %R doi: 10.17694/bajece.419544 %U 10.17694/bajece.419544
ISNAD KARAKAYA, BARIS , KAYA, TURGAY , GULTEN, ARIF . "FPGA-based ANN Design for Detecting Epileptic Seizure in EEG Signal". Balkan Journal of Electrical and Computer Engineering 6 / 2 (Nisan 2018): 15-19. http://dx.doi.org/10.17694/bajece.419544