Yıl 2017, Cilt 1, Sayı , Sayfalar 123 - 131 2017-11-15

Mikrobiyota ve Kanser
Microbiota and Cancer

Ahmet Cihat GENÇ [1] , İlhan HACIBEKİROĞLU [2]

236 1322

Kanser, önemli bir halk sağlığı sorunudur. Günümüzde, onkoloji alanındaki çok önemli gelişmelere rağmen halen kanser küratif hastalıklar kategorisinde değildir. Ancak, kompleks karsinogenez aşamalarında rol oynayan faktörlerin saptanması ile bu yolda önemli adımlar atılmaktadır. İnsan Mikrobiyota projesi kapsamında son dönemde elde edilen veriler, vücudumuzun epitelyal yüzeylerinde yaşayan kommensal mikroorganizma türlerinin bu süreçte aktif rol aldığını, aynı zamanda kanser tedavisine verilen kişisel yanıtlar ve toksisite ile de ilişkili olduğunu göstermiştir. Sonuç olarak, kanser oluşumu ve tedavisi aşamalarında anahtar role sahip major bir faktörün daha ortaya çıkarılması, kansere bağlı kişisel, toplumsal ve ekonomik kayıpları azaltacaktır. Biz, bu derlemede, yakın zamanda yapılan çalışmalardan elde edilen verilere dayanılarak, Mikrobiyotanın, karsinogenezdeki rolünü ve kanser tedavilerine yanıt ve toksisite üzerine etkilerini değerlendirmeyi amaçladık.

Cancer is a major public health problem. Today, despite the very important developments in oncology, cancer is still not in the category of curative diseases. However, signifi cant steps are being taken in this direction by the identifi cation of factors that play a role in the stages of complex carcinogenesis. Recent data from the human microbiology project have shown that commensal microorganism species living on the epithelial surfaces of the body play an active role in this process and are also associated with personal responses to cancer treatment and toxicity. As a result, further exposure of a major factor with key roles in cancer development and treatment stages will reduce personal, social and economic losses associated with cancer. We aimed to assess the role of microbiota in carcinogenesis and their effects on response to cancer treatments and toxicity, based on the data obtained from recent studies in this review.

  • 1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA: a cancer journal for clinicians. 2015;65(2):87-108.
  • 2. Xu Z, Knight R. Dietary effects on human gut microbiome diversity. The British journal of nutrition. 2015;113 Suppl:S1-5.
  • 3. Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. The role of the microbiota in infl ammation, carcinogenesis, and cancer therapy. European journal of immunology. 2015;45(1):17-31.
  • 4. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: Gut microbiota: the neglected endocrine organ. Molecular endocrinology (Baltimore, Md). 2014;28(8):1221-38.
  • 5. Gerritsen J, Smidt H, Rijkers GT, de Vos WM. Intestinal microbiota in human health and disease: the impact of probiotics. Genes & nutrition. 2011;6(3):209-40.
  • 6. Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber-Eibel J, von Haehling S, et al. Altered intestinal function in patients with chronic heart failure. Journal of the American College of Cardiology. 2007;50(16):1561-9.
  • 7. Fuentealba C, Figuerola F, Estévez AM, Bastías JM, Muñoz O. Bioaccessibility of lignans from fl axseed (Linum usitatissimum L.) determined by singleβbatch in vitro simulation of the digestive process. Journal of the science of food and agriculture. 2014;94(9):1729-38.
  • 8. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. The Lancet Oncology. 2012;13(6):607-15.
  • 9. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804-10.
  • 10. Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nature reviews Cancer. 2017;17(5):271-85.
  • 11. Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA: a cancer journal for clinicians. 2017;67(4):326-44.
  • 12. Belkaid Y, Hand TW. Role of the microbiota in immunity and infl ammation. Cell. 2014;157(1):121-41.
  • 13. De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M. Nutritional Keys for Intestinal Barrier Modulation. Frontiers in immunology. 2015;6:612.
  • 14. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nature reviews Immunology. 2014;14(3):141-53.
  • 15. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic infl ammation and carcinogenesis. Immunity. 2014;40(1):128-39.
  • 16. Plottel CS, Blaser MJ. Microbiome and malignancy. Cell host & microbe. 2011;10(4):324-35.
  • 17. Goldszmid RS, Trinchieri G. The price of immunity. Nature immunology. 2012;13(10):932-8.
  • 18. Larsson E, Tremaroli V, Lee YS, Koren O, Nookaew I, Fricker A, et al. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut. 2011:gutjnl-2011-301104.
  • 19. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569-73.
  • 20. Kalina U, Koyama N, Hosoda T, Nuernberger H, Sato K, Hoelzer D, et al. Enhanced production of ILβ18 in butyrateβtreated intestinal epithelium by stimulation of the proximal promoter region. European journal of immunology. 2002;32(9):2635-43.
  • 21. Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM, et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. The Journal of experimental medicine. 2010;207(8):1625-36.
  • 22. Saleh M, Trinchieri G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nature reviews Immunology. 2010;11(1):9.
  • 23. Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang J-P, Brown EM, et al. NLRP6 infl ammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell. 2014;156(5):1045-59.
  • 24. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal infl ammatory disease. Nature. 2008;453(7195):620.
  • 25. Belkaid Y, Naik S. Compartmentalized and systemic control of tissue immunity by commensals. Nature immunology. 2013;14(7):646- 53.
  • 26. Chervonsky AV. Microbiota and autoimmunity. Cold Spring Harbor perspectives in biology. 2013;5(3):a007294.
  • 27. Bongers G, Pacer ME, Geraldino TH, Chen L, He Z, Hashimoto D, et al. Interplay of host microbiota, genetic perturbations, and infl ammation promotes local development of intestinal neoplasms in mice. Journal of Experimental Medicine. 2014;211(3):457-72.
  • 28. Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell host & microbe. 2014;15(3):317-28.
  • 29. Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, et al. The gut microbiome modulates colon tumorigenesis. MBio. 2013;4(6):e00692-13.
  • 30. Mira-Pascual L, Cabrera-Rubio R, Ocon S, Costales P, Parra A, Suarez A, et al. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. Journal of gastroenterology. 2015;50(2):167-79.
  • 31. Poutahidis T, Cappelle K, Levkovich T, Lee C-W, Doulberis M, Ge Z, et al. Pathogenic intestinal bacteria enhance prostate cancer development via systemic activation of immune cells in mice. PloS one. 2013;8(8):e73933.
  • 32. Yamamoto ML, Maier I, Dang AT, Berry D, Liu J, Ruegger PM, et al. Intestinal bacteria modify lymphoma incidence and latency by affecting systemic infl ammatory state, oxidative stress, and leukocyte genotoxicity. Cancer research. 2013;73(14):4222-32.
  • 33. Westbrook AM, Wei B, Hacke K, Xia M, Braun J, Schiestl RH. The role of tumour necrosis factor-β and tumour necrosis factor receptor signalling in infl ammation-associated systemic genotoxicity. Mutagenesis. 2011;27(1):77-86.
  • 34. Sergentanis TN, Zagouri F, Zografos GC. Is antibiotic use a risk factor for breast cancer? A metaβanalysis. Pharmacoepidemiology and drug safety. 2010;19(11):1101-7.
  • 35. Kim Y-G, Udayanga KGS, Totsuka N, Weinberg JB, Núñez G, Shibuya A. Gut dysbiosis promotes M2 macrophage polarization and allergic airway infl ammation via fungi-induced PGE 2. Cell host & microbe. 2014;15(1):95-102.
  • 36. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559-63.
  • 37. DeVita VT, Chu E. A history of cancer chemotherapy. Cancer research. 2008;68(21):8643-53.
  • 38. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967-70.
  • 39. Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. The role of the microbiota in infl ammation, carcinogenesis, and cancer therapy. European journal of immunology. 2015;45(1):17-31.
  • 40. Carmody RN, Turnbaugh PJ. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. The Journal of clinical investigation. 2014;124(10):4173.
  • 41. Haiser HJ, Turnbaugh PJ. Developing a metagenomic view of xenobiotic metabolism. Pharmacological research. 2013;69(1):21- 31.
  • 42. Björkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S. Intestinal microbiota regulate xenobiotic metabolism in the liver. PloS one. 2009;4(9):e6958.
  • 43. Yip LY, Chan ECY. Investigation of host-gut microbiota modulation of therapeutic outcome. Drug Metabolism and Disposition. 2015:dmd. 115.063750.
  • 44. Fujita K-i, Sparreboom A. Pharmacogenetics of irinotecan disposition and toxicity: a review. Current clinical pharmacology. 2010;5(3):209-17.
  • 45. Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Keefe DM. Faecal microfl ora and β-glucuronidase expression are altered in an irinotecan-induced diarrhea model in rats. Cancer biology & therapy. 2008;7(12):1919-25.
  • 46. McIntosh FM, Maison N, Holtrop G, Young P, Stevens VJ, Ince J, et al. Phylogenetic distribution of genes encoding ββglucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environmental microbiology. 2012;14(8):1876-87.
  • 47. Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science. 2010;330(6005):831-5.
  • 48. Lehouritis P, Cummins J, Stanton M, Murphy CT, McCarthy FO, Reid G, et al. Local bacteria affect the effi cacy of chemotherapeutic drugs. Scientifi c reports. 2015;5.
  • 49. Selwyn FP, Cui JY, Klaassen CD. RNA-Seq quantifi cation of hepatic drug processing genes in germ-free mice. Drug Metabolism and Disposition. 2015;43(10):1572-80.
  • 50. Gui Q, Lu H, Zhang C, Xu Z, Yang Y. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res. 2015;14(2):5642-51.
  • 51. Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010;29(4):482.
  • 52. Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. 2016;45(4):931-43.
  • 53. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971-6.
  • 54. Rigby RJ, Carr J, Orgel K, King SL, Lund PK, Dekaney CM. Intestinal bacteria are necessary for doxorubicin-induced intestinal damage but not for doxorubicin-induced apoptosis. Gut microbes. 2016;7(5):414-23.
  • 55. Nigro G, Rossi R, Commere P-H, Jay P, Sansonetti PJ. The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration. Cell host & microbe. 2014;15(6):792-8.
  • 56. Chitapanarux I, Chitapanarux T, Traisathit P, Kudumpee S, Tharavichitkul E, Lorvidhaya V. Randomized controlled trial of live lactobacillus acidophilus plus bifi dobacterium bifi dum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiation Oncology. 2010;5(1):31.
  • 57. Cario E. Toll-like receptors in the pathogenesis of chemotherapyinduced gastrointestinal toxicity. Current opinion in supportive and palliative care. 2016;10(2):157-64.
  • 58. Cvan Trobec K, Kerec Kos M, Trontelj J, Grabnar I, Tschirner A, Palus S, et al. Infl uence of cancer cachexia on drug liver metabolism and renal elimination in rats. Journal of cachexia, sarcopenia and muscle. 2015;6(1):45-52.
  • 59. Yeh K-Y, Wang H-M, Chang JW-C, Huang J-S, Lai C-H, Lan Y-J, et al. Omega-3 fatty acid-, micronutrient-, and probiotic-enriched nutrition helps body weight stabilization in head and neck cancer cachexia. Oral surgery, oral medicine, oral pathology and oral radiology. 2013;116(1):41-8.
  • 60. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nature reviews Cancer. 2015;15(7):409.
  • 61. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. International Journal of Radiation Oncology* Biology* Physics. 2004;58(3):862-70.
  • 62. Jones RM, Desai C, Darby TM, Luo L, Wolfarth AA, Scharer CD, et al. Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell reports. 2015;12(8):1217-25.
  • 63. Delia P, Sansotta G, Donato V, Frosina P, Messina G, De Renzis C, et al. Use of probiotics for prevention of radiation-induced diarrhea. World journal of gastroenterology: WJG. 2007;13(6):912.
  • 64. Ishihara H, Tanaka I, Yakumaru H, Chikamori M, Ishihara F, Tanaka M, et al. Circadian transitions in radiation dose-dependent augmentation of mRNA levels for DNA damage-induced genes elicited by accurate real-time RT-PCR quantifi cation. Journal of radiation research. 2010;51(3):265-75.
  • 65. Mukherji A, Kobiita A, Ye T, Chambon P. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell. 2013;153(4):812-27.
  • 66. Couzin-Frankel J. Cancer immunotherapy. American Association for the Advancement of Science; 2013.
  • 67. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifi dobacterium promotes antitumor immunity and facilitates anti–PD-L1 effi cacy. Science. 2015;350(6264):1084-9.
  • 68. Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M, Cassard L, et al. Microbial translocation augments the function of adoptively transferred self/tumor-specifi c CD8+ T cells via TLR4 signaling. Journal of Clinical Investigation. 2007;117(8):2197.
  • 69. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. Journal of Clinical Oncology. 2008;26(32):5233-9.
  • 70. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56-61.
  • 71. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079-84.
  • 72. Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota disbiosis is associated with colorectal cancer. Frontiers in microbiology. 2015;6.
  • 73. Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, et al. Potential of fecal microbiota for earlyβstage detection of colorectal cancer. Molecular systems biology. 2014;10(11):766.
Konular Sağlık Bilimleri ve Hizmetleri
Dergi Bölümü Derleme
Yazarlar

Yazar: Ahmet Cihat GENÇ
Kurum: Sakarya Üniversitesi, Tıp Fakültesi, İç Hastalıkları Anabilim Dalı, Sakarya
Ülke: Turkey


Yazar: İlhan HACIBEKİROĞLU (Sorumlu Yazar)
Kurum: Sakarya Üniversitesi, Tıp Fakültesi, Tıbbi Onkoloji Anabilim Dalı, Sakarya
Ülke: Turkey


Bibtex @derleme { bshr363357, journal = {JOURNAL OF BIOTECHNOLOGY AND STRATEGIC HEALTH RESEARCH}, issn = {}, eissn = {2587-1641}, address = {Deneysel, Biyoteknolojik, Klinik ve Stratejik Sağlık Araştırmaları Derneği}, year = {2017}, volume = {1}, pages = {123 - 131}, doi = {}, title = {Mikrobiyota ve Kanser}, key = {cite}, author = {HACIBEKİROĞLU, İlhan and GENÇ, Ahmet Cihat} }
APA GENÇ, A , HACIBEKİROĞLU, İ . (2017). Mikrobiyota ve Kanser. JOURNAL OF BIOTECHNOLOGY AND STRATEGIC HEALTH RESEARCH, 1 (), 123-131. Retrieved from http://dergipark.gov.tr/bshr/issue/32641/363357
MLA GENÇ, A , HACIBEKİROĞLU, İ . "Mikrobiyota ve Kanser". JOURNAL OF BIOTECHNOLOGY AND STRATEGIC HEALTH RESEARCH 1 (2017): 123-131 <http://dergipark.gov.tr/bshr/issue/32641/363357>
Chicago GENÇ, A , HACIBEKİROĞLU, İ . "Mikrobiyota ve Kanser". JOURNAL OF BIOTECHNOLOGY AND STRATEGIC HEALTH RESEARCH 1 (2017): 123-131
RIS TY - JOUR T1 - Mikrobiyota ve Kanser AU - Ahmet Cihat GENÇ , İlhan HACIBEKİROĞLU Y1 - 2017 PY - 2017 N1 - DO - T2 - JOURNAL OF BIOTECHNOLOGY AND STRATEGIC HEALTH RESEARCH JF - Journal JO - JOR SP - 123 EP - 131 VL - 1 IS - SN - -2587-1641 M3 - UR - Y2 - 2017 ER -
EndNote %0 JOURNAL OF BIOTECHNOLOGY AND STRATEGIC HEALTH RESEARCH Mikrobiyota ve Kanser %A Ahmet Cihat GENÇ , İlhan HACIBEKİROĞLU %T Mikrobiyota ve Kanser %D 2017 %J JOURNAL OF BIOTECHNOLOGY AND STRATEGIC HEALTH RESEARCH %P -2587-1641 %V 1 %N %R %U
ISNAD GENÇ, Ahmet Cihat , HACIBEKİROĞLU, İlhan . "Mikrobiyota ve Kanser". JOURNAL OF BIOTECHNOLOGY AND STRATEGIC HEALTH RESEARCH 1 / (Kasım 2017): 123-131.