Yıl 2018, Cilt 14, Sayı 3, Sayfalar 333 - 336 2018-09-30

A Characterization of Approximation of Hardy Operators in VLS

Lütfi Akın [1]

22 41

Variable exponent spaces and Hardy operator space have played an important role in recent harmonic analysis because they have an interesting norm including both local and global properties. The variable exponent Lebesgue spaces are of interest for their applications to modeling problems in physics, and to the study of variational integrals and partial dierential equations with non-standard growth conditions. This  studies  also  has  been  stimulated  by  problems  of  elasticity,  fluid  dynamics,  calculus  of variations,  and   differential   equations  with  non-standard   growth   conditions. In this study, we will discuss a characterization of approximation of Hardy operators in variable Lebesgue spaces.

Variable exponent, Hardy operator, Sobolev space
  • 1. Bernstein, S, N, Demonstration du teoreme de Weirerstrass, fondee sur le calcul des probabilites, Communication Society Mathematics, 1913, 13.
  • 2. Berens, H, Lorentz, G, G, Inverse theorems for Bernstein polynomials, Indiana University Mathematics Journal, 1972, 21, 693-708.
  • 3. Berens, H, DeVore, R,A, Quantitative Korovkin theorems for positive linear operators on Lp spaces, Transactions American Mathematical Society, 1978, 245, 349-361.
  • 4. Ditzian, Z, Totik, V, Moduli of Smoothness, Springer, Series in Computational Mathematics, Springer-Verlag, 1987, (9).
  • 5. Bing-Zheng, L, Bo-Lu, H, Ding-Xuan Z, Approximation on Variable Exponent Spaces by Linear Integral Operators, Journal of Approximation Theory, 2017, 223, 29-51.
  • 6. Orlicz,W, Uber konjugierte Exponentenfolgen, Studia Mathematica, 1931, 3, 200-211.
  • 7. Acerbi, E, Mingione, G, Regularity results for a class of functionals with nonstandard growth, Archive for Rational Mechanics and Analysis, 2001, 156, 121-140.
  • 8. Blomgren, P, Chan, T, Mulet, P, Wong, C, K, Total variation image restoration: numerical methods and extensions, Proceedings of the 1997 IEEE International Conference on Image Processing, 1997, 3, 384-387.
  • 9. Bollt, E, M, Chartrand, R, Esedoglu, S, Schultz, P, Vixie, K, R, Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion, Advance Computational Mathematics, 2009, 31, 61-85.
  • 10. Chen,Y, Levine, S, Rao, M, Variable exponent linear growth functionals in image restoration, SIAM Journal of Applied Mathematics, 2006, 66, 1383-1406
  • 11. Mamedov,F, Zeren,Y, Akın, L, Compactification of weighted Hardy operator in variable exponent Lebesgue spaces, Asian Journal of Mathematics and Computer Science, 2017, 17:1, 38-47.
  • 12. Fan, X, L, Zhao, D, On the spaces Lp(x) and Wm;p(x), Journal of Mathematic Analysis and Applications, 2001, 263, 424-446.
  • 13. Diening, L, Harjulehto, P, Hastö, P, Ruzicka, M, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin/Heidelberg, 2011.
  • 14. Stein, E, M, Singular Integrals and Dierentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.
Birincil Dil en
Konular Mühendislik
Dergi Bölümü Makaleler
Yazarlar

Yazar: Lütfi Akın
Kurum: Mardin Artuklu Üniversitesi
Ülke: Turkey


Bibtex @araştırma makalesi { cbayarfbe449954, journal = {Celal Bayar Üniversitesi Fen Bilimleri Dergisi}, issn = {1305-130X}, eissn = {1305-1385}, address = {Celal Bayar Üniversitesi}, year = {2018}, volume = {14}, pages = {333 - 336}, doi = {10.18466/cbayarfbe.449954}, title = {A Characterization of Approximation of Hardy Operators in VLS}, key = {cite}, author = {Akın, Lütfi} }
APA Akın, L . (2018). A Characterization of Approximation of Hardy Operators in VLS. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 14 (3), 333-336. DOI: 10.18466/cbayarfbe.449954
MLA Akın, L . "A Characterization of Approximation of Hardy Operators in VLS". Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14 (2018): 333-336 <http://dergipark.gov.tr/cbayarfbe/issue/39486/449954>
Chicago Akın, L . "A Characterization of Approximation of Hardy Operators in VLS". Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14 (2018): 333-336
RIS TY - JOUR T1 - A Characterization of Approximation of Hardy Operators in VLS AU - Lütfi Akın Y1 - 2018 PY - 2018 N1 - doi: 10.18466/cbayarfbe.449954 DO - 10.18466/cbayarfbe.449954 T2 - Celal Bayar Üniversitesi Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 333 EP - 336 VL - 14 IS - 3 SN - 1305-130X-1305-1385 M3 - doi: 10.18466/cbayarfbe.449954 UR - http://dx.doi.org/10.18466/cbayarfbe.449954 Y2 - 2018 ER -
EndNote %0 Celal Bayar Üniversitesi Fen Bilimleri Dergisi A Characterization of Approximation of Hardy Operators in VLS %A Lütfi Akın %T A Characterization of Approximation of Hardy Operators in VLS %D 2018 %J Celal Bayar Üniversitesi Fen Bilimleri Dergisi %P 1305-130X-1305-1385 %V 14 %N 3 %R doi: 10.18466/cbayarfbe.449954 %U 10.18466/cbayarfbe.449954
ISNAD Akın, Lütfi . "A Characterization of Approximation of Hardy Operators in VLS". Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14 / 3 (Eylül 2018): 333-336. http://dx.doi.org/10.18466/cbayarfbe.449954