Yıl 2018, Cilt 6, Sayı 2, Sayfalar 131 - 139 2018-12-25

Kontrollü Ortamda Bitkisel Yetiştiricilik için Arduino Uyumlu Bir Toprak Nemi İzleme Sistemi Tasarımı

Ünal Kızıl [1] , Sefa Aksu [2] , Gökhan Çamoğlu [3]

9 37

Dünyada hayatın devam edebilmesi için suyun varlığını sürdürmesi tartışılamaz bir gerçektir. Kullanılabilir su kaynakları da bu bağlamda kritik öneme sahiptir. Bu kaynağın sürekliliği ise gün geçtikçe artan nüfusun tehdidi altındadır. Çözüm olarak ortaya atılan fikirlerin buluştuğu nokta, suyun daha etkili kullanılmasıdır. Sulama teknolojilerindeki gelişmeler de bu amaca hizmet edecek şekilde ilerlemektedir. Buradan hareketle toprakta nemin hareketinin izlenmesi oldukça önem kazanmıştır. Nemi izleme için ampirik modellerin kullanılmasından başlayan süreç, elektronik cihazlarla anlık sonuçlar alınabilmesine kadar gelmiştir. Toprağın mekanik ve kimyasal özelliklerinden faydalanılarak izleme sağlamak için üretilmiş bu cihazlar yüksek maliyetli olmaları nedeniyle yeterince yaygınlaşamamıştır. Elektronik pazarının, kullanıcıların kendileri için ürettiği noktaya doğru ilerlemesiyle sensör bileşenleri çok daha fazla ulaşılabilir olmuştur. Toprak nem sensörleri de çeşitli üreticiler tarafından farklı donanımlarla üretilmeye başlanmış ve rezistif toprak nem sensörleri 2$ civarında bulunabilir olmuştur. Benzer şekilde mikroişlemci devre kartları (Arduino) ve yazılım üretme sistemleri (IDE) de elde edilebilir duruma gelmiştir. Kolay elde edilebilir bu sistem bileşenlerinin sonuç verme kabiliyetleri ise yeterince araştırılmamış bir konudur. Bu çalışma kapsamında, düşük maliyetli bir toprak nemi izleme sistemi üretilmiş olup rezistif toprak nem sensörlerinin test edilmesi sağlanmıştır. Kontrollü ortamda yürütülen deneme sonucunda, ortalama belirtme katsayısı 0.91 olarak bulunmuştur. Bu değer yüksek maliyetli rezistif sensörlerden düşük olsa da istatistiki açıdan oldukça önemli bulunmuştur.

Arduino, toprak nemi, kalibrasyon, , toprak nem sensörü
  • Al-Asadi, R.A. ve Mouazen, A.M., 2014. Combining frequency domain reflectometry and visible and near infrared spectroscopy for assessment of soil bulk density, Soil and Tillage Research, 135: 60–70.
  • Allen, R.G., 1998. Irrigation Engineering Principles, Course Lecture Notes, Department of Biological and Irrigation Engineering, Utah State University, Logan, Utah, USA, :300.
  • Arduino, 2015. http://www.arduino.cc, Son Ulaşım: Haziran 2018.
  • Bhanarkar, M.K. ve Korake, P.M., 2016. Soil salinity and moisture measurement system for grapes field by wireless sensor network, Systems & Control, 3: 1164021.
  • Bircher, S., Skou, N., Jensen, K. H., Walker, J. P., Rasmussen, L., 2011. A soil moisture and temperature network for SMOS validation in Western Denmark, Hydrology and Earth System Sciences Discussions, 16: 9961-10006.
  • Çamoğlu, G., Demirel, K., Genç L., Akçal, A., 2017. Real-Time Monitoring of Water Stress by Turgor Pressure Sensors, International Congress on Landscape Architecture Research, 30.
  • Çamoğlu, G., Demirel, K., Genç, L., 2018. Use of Infrared Thermography and Hyperspectral Data to Detect Effects of Water Stress on Pepper, Quantitative InfraRed Thermography Journal, 15(1): 81-94.
  • Chanasyk, D.S. ve Naeth, M.A., 1996. Field measurement of soil moisture using neutron probes, Canadian Journal of Soil Science, 76(3): 317-323.
  • Gaikwad, P., Devendrachari, M.C., Thimmappa, R., Paswan, B., Kottaichamy, A.J., Kotresh, H.M.N., Thotiyl, M.O., 2015. Galvanic Cell Type Sensor for Soil Moisture Analysis, Analytical Chemistry, 87(14): 7439-7445.
  • Gao, X.L., Peng, S.Z., Wang, W.G., Xu, J.Z., Yang, S.H., 2016. Spatial and temporal distribution characteristics of reference evapotranspiration trends in Karstarea: a case study in Guizhou Province, China, Meteorology and Atmospheric Physics, 128(5): 677–688.
  • Huan, Z., Wang, H., Li, C., Wan, C., 2017. The soil moisture sensor based on soil dielectric property, Personal and Ubiquitous Computing, 21(1): 67-74.
  • Janik, G., Skierucha, W., Blas, M., Sobik, M., Albert, M., Dubicki, M., Zawada, A., 2014. TDR technique for estimating the intensity of effective non rainfall, International Agrophysics, 28(1): 23–37.
  • Jaria, F. ve Madramootoo, C.A., 2013. Thresholds for irrigation management of processing tomatoes using soil moisture sensors in Southwestern Ontario, Transactions of the ASABE, 56(1): 155–166.
  • Jiao-Jun, Z., Hong-Zhang, K., Gonda, Y., 2014. Application of Wenner configuration to estimate soil water content in pine plantations on sandy land, Pedosphere, 17(6): 801–812.
  • Kojima, Y., Shigeta, R., Miyamoto, N., Shirahama, Y., Nishioka, K., Mizoguchi, M., Kawahara, Y., 2016. Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor, Sensors, 16(8): 1292.
  • Kushner, D., 2011. The Making of Arduino, IEEE Spectrum, https://spectrum.ieee.org/geek-life/hands-on/the-making-of-arduino, Son Ulaşım: Haziran 2018.
  • Maes, W.H., Baert, A., Huete, A.R., Minchin, P.E.H., Snelgar, W.P., Steppe, K., 2016. A new wet reference target method for continuous infrared thermography of vegetations, Agricultural and Forest Meteorology, 226: 119–131.
  • Mittelbach, H., Lehner, I., Seneviratne, S.I., 2012. Comparison of four soil moisture sensor types under field conditions in Switzerland, Journal of Hydrology, 430-431: 39-49.
  • Mosuro, G.O., Bayewu, O.O., Oloruntola, M.O., 2012. Application of vertical electrical soundings for foundation investigation in a basement complex terrain: a case study of Ijebu Igbo, Southwestern Nigeria, 5th International Conference on Environmental and engineering Geophysics, Changsha, China, 29–34.
  • Oates, M.J., Ramadan, K., Molina-Martínez, J.M., Ruiz-Canales, A., 2017. Automatic fault detection in a low cost frequency domain (capacitance based) soil moisture sensor, Agricultural Water Management, 183: 41-48.
  • Ochsner, T. E., Cosh, M.H., Cuenca, R.H., Dorigo, W.A., Draper, C.S., Hagimoto, Y., Kerr, Y.H., Njoku, E.G., Small, E.E., Zreda, M., Larson, K.M., 2013. State of the Art in Large-Scale Soil Moisture Monitoring, Soil Science Society of America Journal, 77: 1888-1919.
  • Pariva, D., Ashi, Q., Ruchi, B., Syed, A.H., 2012. A review of the methods available for estimating soil moisture and its implications for water resource management, Journal of Hydrology, 458-459: 110-117.
  • Reynolds, S.G., 1970. The gravimetric method of soil moisture determination Part I A study of equipment, and methodological problems, Journal of Hydrology, 11(3): 258-273.
  • Robinson, D.A., Campbell, C.S., Hopmans, J.W., Hornbuckle, B.K., Jones, S.B., Knight, R., Ogden, F., Selker, J., Wendroth, O., 2008. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review, Vadose Zone Journal, 7(1): 1539-1663.
  • Soulis, K.X., Elmaloglou, S., Dercas, N., 2015. Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems, Agricultural Water Management, 148: 258-268.
  • Susha Lekshmi S.U., Singh, D.N., Shojaei Baghini, M., 2014. A critical review of soil moisture measurement, Measurement, 54: 92-105.
  • Topp, G.C., Zebchuk, W.D., Davıs, J.L., Bailey, W.G., 1984. The Measurement of Soil Water Content Using a Portable TDR Hand Probe, Canadian Journal of Soil Science, 64(3): 313-321.
  • Torres, V., Palacios, I., Iriarte, J.C., Liberal, I., Santesteban, L.G., Miranda, C., Royo, J.B.,Gonzalo, R., 2016. Monitoring water status of grapevine by means of THzwaves, Journal of Infrared, Millimeter, and Terahertz Waves, 37 (5): 507–513.
  • Valdés, R., Ochoa, J., Franco, J.A., Sánchez-Blanco, M.J., Bañón, S., 2015. Saline irrigation scheduling for potted geranium based on soil electrical conductivity and moisture sensors, Agricultural Water Management, 149: 123-130.
  • Wang, B.X., Fang, Z.H., Yu, W.P., 1989. The heat and moisture transport properties of wet porous media, International Journal of Thermophysics, 10(1): 211-225.Zazueta, F.S. ve Xin, J., 2004. Soil Moisture Sensors, Bulletin 292, University of Florida, Gainsville, FL, USA.
  • Zehe, E., 2010. Interactive comment on “Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains” by E. Zehe et al., Hydrology and Earth System Sciences Discussions, 6: C3145-C3151.
Birincil Dil tr
Konular Mühendislik, Ziraat
Dergi Bölümü Makaleler
Yazarlar

Yazar: Ünal Kızıl (Sorumlu Yazar)
Kurum: ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ, TARIMSAL YAPILAR VE SULAMA BÖLÜMÜ
Ülke: Turkey


Yazar: Sefa Aksu

Yazar: Gökhan Çamoğlu

Bibtex @araştırma makalesi { comuagri434661, journal = {ÇOMÜ Ziraat Fakültesi Dergisi}, issn = {2147-8384}, eissn = {2564-6826}, address = {Çanakkale Onsekiz Mart Üniversitesi}, year = {2018}, volume = {6}, pages = {131 - 139}, doi = {}, title = {Kontrollü Ortamda Bitkisel Yetiştiricilik için Arduino Uyumlu Bir Toprak Nemi İzleme Sistemi Tasarımı}, key = {cite}, author = {Kızıl, Ünal and Aksu, Sefa and Çamoğlu, Gökhan} }
APA Kızıl, Ü , Aksu, S , Çamoğlu, G . (2018). Kontrollü Ortamda Bitkisel Yetiştiricilik için Arduino Uyumlu Bir Toprak Nemi İzleme Sistemi Tasarımı. ÇOMÜ Ziraat Fakültesi Dergisi, 6 (2), 131-139. Retrieved from http://dergipark.gov.tr/comuagri/issue/41582/434661
MLA Kızıl, Ü , Aksu, S , Çamoğlu, G . "Kontrollü Ortamda Bitkisel Yetiştiricilik için Arduino Uyumlu Bir Toprak Nemi İzleme Sistemi Tasarımı". ÇOMÜ Ziraat Fakültesi Dergisi 6 (2018): 131-139 <http://dergipark.gov.tr/comuagri/issue/41582/434661>
Chicago Kızıl, Ü , Aksu, S , Çamoğlu, G . "Kontrollü Ortamda Bitkisel Yetiştiricilik için Arduino Uyumlu Bir Toprak Nemi İzleme Sistemi Tasarımı". ÇOMÜ Ziraat Fakültesi Dergisi 6 (2018): 131-139
RIS TY - JOUR T1 - Kontrollü Ortamda Bitkisel Yetiştiricilik için Arduino Uyumlu Bir Toprak Nemi İzleme Sistemi Tasarımı AU - Ünal Kızıl , Sefa Aksu , Gökhan Çamoğlu Y1 - 2018 PY - 2018 N1 - DO - T2 - ÇOMÜ Ziraat Fakültesi Dergisi JF - Journal JO - JOR SP - 131 EP - 139 VL - 6 IS - 2 SN - 2147-8384-2564-6826 M3 - UR - Y2 - 2018 ER -
EndNote %0 ÇOMÜ Ziraat Fakültesi Dergisi Kontrollü Ortamda Bitkisel Yetiştiricilik için Arduino Uyumlu Bir Toprak Nemi İzleme Sistemi Tasarımı %A Ünal Kızıl , Sefa Aksu , Gökhan Çamoğlu %T Kontrollü Ortamda Bitkisel Yetiştiricilik için Arduino Uyumlu Bir Toprak Nemi İzleme Sistemi Tasarımı %D 2018 %J ÇOMÜ Ziraat Fakültesi Dergisi %P 2147-8384-2564-6826 %V 6 %N 2 %R %U
ISNAD Kızıl, Ünal , Aksu, Sefa , Çamoğlu, Gökhan . "Kontrollü Ortamda Bitkisel Yetiştiricilik için Arduino Uyumlu Bir Toprak Nemi İzleme Sistemi Tasarımı". ÇOMÜ Ziraat Fakültesi Dergisi 6 / 2 (Aralık 2018): 131-139.