New Myxomycete Records for Turkey: One New Genus and Three New Species

Hayri BABA*, A. Üsame TAMER, Fatih KALYONCU
Celal Bayar University, Faculty of Arts & Sciences, Department of Biology, Manisa - TURKEY

Received: 06.02.2008
Accepted: 23.06.2008

Abstract: In this study, 3 new species and 1 new genus were recorded for the first time and added to the list of Turkish Myxomycetes. These new records are Dictydiaethalium Rostaf. with Dictydiaethalium plumbeum (Schumach.) Rostaf. ex Lister, Didymium melanospermum (Pers.) T. Macbr., and Symphytocarpus impexus Ing & Nann.-Bremek.

Key Words: Turkey, Myxomycetes, new records

Introduction

Turkey is an ideal location to study Myxomycetes because it has natural and profuse vegetation and a wide range of macro- and micro-climates. The number of Myxomycete taxa known worldwide is about 1000 (Ergul & Oran, 2005). Sesli and Denchev (2005) made a compilation of Myxomycetes and Macromycetes in Turkey and 177 taxa of Myxomycetes were reported (Demirel et al., 2006), and later Yağız and Afyon (2007) reported 216 taxa of Myxomycetes. For this reason there is a great need for an increase in the frequency of taxonomical and mycofloristical studies. By the increase in the number of similar studies it will be possible to fill in the gap and it may cause an increase in new Myxomycetes taxa for Turkey.

Materials and Methods

The samples were collected from Manisa in 2006. The fructification of Myxomycetes was obtained using the moist chamber technique in the laboratory. Several kinds of plant remains and bark from living trees were kept in an incubator at 25 ± 0.1 °C illuminated artificially in a 12:12 h light-dark cycle. The cultures were moistened with distilled water adjusted with KOH to pH 7.0. After 2 days the pH of the moisture in the dishes was measured with pH sticks. The moist chamber was then examined every second or third day under a dissecting microscope. When developing Myxomycetes were found, the moist chamber was allowed to dry slowly and the Myxomycetes were dried for a week. All the chambers were then rewetted for another 4-week period and examined as before (Gilbert & Martin, 1933; Harkonen & Uotila, 1983).

The specimens were preserved also as permanent slides in Hoyer’s medium. Both microscopic and macroscopic observations were performed for taxonomical approaches. In the meantime, some photographs from characteristic qualitative objects were
taken. All data were evaluated comparatively for taxonomical purposes (Martin & Alexopoulos, 1969).

The Myxomycetes specimens were identified with the aid of the literature listed in the references (Martin & Alexopoulos, 1969; Neubert et al., 1993, 1995, 2000; Stephenson & Stempen, 1994). These specimens are stored at the Herbarium of Celal Bayar University, Manisa, Turkey.

Results

Class: Myxomycetes
Subclass: Myxogastromycetidae
Order: Liceales
Family: Enteridiaceae
Genus: *Dictydiaethalium* Rostaf.

Dictydiaethalium plumbeum (Schumach.) Rostaf. ex Lister, Mycet. 157. 1894.

Syn: *Fuligo plumbea* Schum.
Reticularia plumbea (Schum.) Fr.
Ostracoderma spadiceum Schw.
Licea rugulosa Wallr.,
Licea applanata Berk.,
Lycogala lenticulare Dur. & Mont.,
Reticularia entoxantha Berk.,
Reticularia lurida Berk. & Br.,
Licea cinnabarina Berk. & Br.,
Licea tenuissima Berk. & Br.,
Dictydiaethalium applanatum (Berk.) Rostaf.,
Clathroptychium rugulosum (Wallr.) Rostaf.,
Ophiuridium dissiliens Hazsl.,
Dictydiaethalium dissiliens Hazsl.,
Clathroptychium cinnabarinum (Berk. & Br.)
Clathroptychium dissiliens (Hazsl.) Berl.,
Clathroptychium berkeleyi Massac,
Dictydiaethalium ferruginea Nann.-Brenek.

Sporophores pseudoaethaloid (occasionally sporangiate or aethaliate fruiting bodies are encountered) composed of numerous cylindrical sporangia, 0.3-0.5 mm in diameter and 1-3 mm tall, dull yellow to yellowish or dark reddish brown; peridium membranous, not persisting in mature fruiting bodies except at the apices of the individual sporangia and in the junctions between adjacent sporangia, dehiscence occurring as a result of the breaking apart of the individual sporangial caps, each of which remains connected to the thread-like strands formed in the sporangial junctions; hypothallus thick, often extending beyond the margin of the fruiting body, silvery or pallid; spores olivaceous brown to yellow in mass, nearly colourless to pale yellow by transmitted light, minutely roughened, 8.5-11 μm in diameter (Figure 1).

Locality: Saruhanlı-Eğrigöl forest, 440 m, on decaying debris of *Pinus brutia*, 03.12.2006, H. Baba 396.

Distribution: USA, Italy, France, Japan, Denmark, India.

Class: Myxomycetes
Subclass: Myxogastromycetidae
Order: Physarales
Family: Didymiaceae
Genus: *Didymium*

Syn: *Physarum melanospermum* Pers.

Stalked or sessile sporangia, gregarious, subglobose or depressed, deeply umbilicate below, white or grey, 0.5-1 mm in diameter and up to 1 mm tall; peridium firm, dull brown or black, more or less densely covered with white lime crystals; stalk usually short, stout, rarely up to two-thirds of the total height, dull brown or black, often completely immersed in the umbilicate base of the sporangium; columella prominent hemispherical, dark or pallid, calcareous; capillitium consisting of sparingly branched pale to purple brown, sinuous threads varying from slender to robust, often bearing dark, nodular thickenings; spores black in mass, dull purplish brown by transmitted light, strongly warted or spinulose, 11-14 μm in diameter (Figure 2).

Locality: Turgutlu Ovacık plateau; 800 m, on living body of *Pinus brutia*, 28.08.2005, H.Baba 348 (natural).

Distribution: USA, Panama, Netherlands, Spain, Japan, China, Portugal, Finland, Czech Republic, France, Dominican Republic, Iceland.

Class: Myxomycetes

Subclass: Stemonitomycetidae
Order: Stemonitales
Family: Stemonitaceae
Genus: *Symphytocarpus*

Syn: *Stemonitis splendens* var. *confluens* Lister.

Sporophores pseudoaethaloid, crowded together, 0.5 mm in diameter and 5 mm in height, black or pale brown; hypothallus bright brown; sporangia sessile; peridium fugaceous; columella stout but narrowing upwards and ending into the capillitial net above, reddish brown to pale black in transmitted light; capillitium arising from the entire columella, primary branches stout and black branched and anastomosed free ends brown, covered with thin membranous or not; spores black in mass, lilac-brown, pale brown or black in transmitted light, fairly warted, 8-9 μm in diameter; plasmodium white (Figure 3).

Locality: Turgutlu Azıtepe district; 100 m, on piece of branch and decaying wood under *Pinus* spp., 18.11.2006, H.Baba 1 (natural).

Distribution: USA, Netherlands, Spain, France.

Figure 2. a) Stereomicroscopic view of *Didymium melanospermum* b) Spores and capillitium.

Figure 3. a) Stereomicroscopical view of *Symphytocarpus impexus* b) Columella, spore and capillitium.
Discussion

In this study we have reported 3 new species and 1 genus for Turkish Myxomycetes: *Dictydiaethalium* with *Dictydiaethalium plumbeum*, *Didymium melanospermum*, and *Symphytocalpus impexus*.

Most species of Myxomycetes appear to be cosmopolitan, common inhabitants of decaying plant material throughout the world. They are particularly abundant in forested regions, where decaying logs, stumps, and dead leaves furnish a plentiful supply of potential substrates (Martin et al., 1969).

Gilbert and Martin (1933) accidentally discovered that the moist chamber technique was an excellent method for obtaining fructifications of the standard means for studies and inventories of Myxomycetes. It is applicable to almost any kind of substrate but has often been used for bark samples. Moist chamber cultures have yielded sporangia of species too small to be detected in the field and several new species have been described (Eliasson, 1991).

Dictydiaethalium plumbeum, a cosmopolitan species, usually living on decaying wood, is composed of closely compacted sporangia each with a separate wall, which is thickened at the junctions. The thinner portions of the wall disappear by maturity and the fructification becomes pseudoaethaloid. This fructification was obtained in moist chamber culture.

Didymium melanospermum, a cosmopolitan species, collected almost exclusively from forest floor litter and thus is presumptively litter-inhabiting. While according to Stephenson and Stempen (1994) this species usually grows on decaying wood, twigs, and dead leaves, in our study it was collected on living bark and decaying wood of *Pinus brutia*. The distinguishing characteristics of this species are the robust, deeply umbilicate sporangia on short stalks. This fructification was obtained on natural substrata.

Symphytocalpus impexus is pseudoaethaloid, crowded together, black or pale brown, sporangia sessile, peridium fugaceous, covered with thin membranous or not; this fructification was obtained on natural substrata on piece of branch and decaying wood.

In conclusion, although the number of known Myxomycetes species in the world is 1000, only about 100 taxa have been reported using the moist chamber technique and naturally in Turkey (Dulger et al., 2005; Ergul & Oran, 2005).

Acknowledgement

This study was supported by the Celal Bayar University Scientific Research Projects (BAP) (Project No: FEF - 2005/084).

References

Gilbert HC & Martin GW (1933) *Myxomycetes found on the bark of living trees.* Univ Iowa Stud, (Nat Hist) 15: 3-8.

