Strong solution for a high order boundary value problem with integral condition

Ahcene MERAD1,*, Ahmed Lakhdar MARHOUNE2

1Department of Mathematics, Faculty of Sciences, Larbi Ben M’hidi University, Oum El Bouaghi, 04000, Algeria
2Department of Mathematics, Faculty of Sciences, Mentouri University, Constantine, 25000, Algeria

Received: 29.05.2011 • Accepted: 29.01.2012 • Published Online: 19.03.2013 • Printed: 22.04.2013

Abstract: The present paper is devoted to a proof of the existence and uniqueness of strong solution for a high order boundary value problem with integral condition. The proof is based by a priori estimate and on the density of the range of the operator generated by the studied problem.

Key words: Integral condition, energy inequality, boundary value problem

1. Introduction
In the rectangular domain $Q = (0, 1) \times (0, T)$, with $T < \infty$, we consider the differential equation

$$Lu = \frac{\partial^4 u}{\partial t^4} + (-1)^{\alpha} \frac{\partial^\alpha}{\partial x^\alpha} \left(a(x, t) \frac{\partial^\alpha u}{\partial x^\alpha} \right) = f(x, t),$$

where $a(x, t)$ satisfy the assumptions

$$0 < a_0 \leq a(x, t) \leq a_1,$$

$$c_1' \leq \frac{\partial^k a(x, t)}{\partial x^k} \leq c_k, \quad k = 1, 4, \quad \text{with} \quad c_1' \geq 0, \quad \forall (x, t) \in \mathcal{Q},$$

subject to the initial conditions

$$u(x, 0) = 0, \quad \frac{\partial u(x, 0)}{\partial t} = 0, \quad x \in (0, 1),$$

final conditions

$$\frac{\partial^2 u(x, T)}{\partial t^2} = 0, \quad \frac{\partial^4 u(x, T)}{\partial x^4} = 0, \quad x \in (0, 1),$$

boundary conditions

$$\frac{\partial^i u(0, t)}{\partial x^i} = 0, \quad \text{for} \quad 0 \leq i \leq \alpha - 1, \quad t \in (0, T),$$

$$\frac{\partial^i u(1, t)}{\partial x^i} = 0, \quad \text{for} \quad 0 \leq i \leq \alpha - 2, \quad t \in (0, T),$$

*Correspondence: meradahcene@yahoo.fr

2010 AMS Mathematics Subject Classification: .
and the integral (nonlocal) condition
\[\int_0^1 u(\xi, t) \, d\xi = 0, \quad t \in (0, T). \] (1.8)

The importance of boundary value problems with integral boundary conditions has been pointed out by Samarski [21]. We remark that integral boundary conditions for evolution problems have various applications in chemical engineering, thermoelasticity, underground water flow and population dynamics; see for example [7, 12, 22, 17]. Boundary value problems for parabolic equations with an integral boundary condition are investigated by Batten [1], Bouziani and Benouar [2], Cannon [4, 5], Cannon, et al. [6], Ionkin [15], Kamynin [16], Shi and Shillor [23], Shi [22], Marhoune and Bouzit [19], Denche and Marhoune [8, 9, 10, 11], Yurchuk [24], and many references therein. The problem with an integral one-space-variable condition is studied in Kartynnik [17], and Denche and Marhoune [11].

2. Preliminaries
In this paper, we prove the existence and uniqueness of a strong solution of the problem stated in equation (1.1) – (1.8). The demonstration is based on an a priori estimate and the density of the image of the operator generated by the problem (1.1) – (1.8). This problem can be written in the operator form

\[Lu = F, \] (2.9)

where the operator \(L \) is considered from \(E \) to \(F \). We consider the domain of definition \(D(L) \) such that \(E \) is the Banach space consisting of all functions \(u \in L^2(Q) \), satisfying equations (1.1) – (1.8), with the finite norm

\[\|u\|_E^2 = \int_Q \frac{(1-x)}{2} \left[\left| \frac{\partial^4 u}{\partial t^4} \right|^2 + \left| \frac{\partial^\alpha u}{\partial x^\alpha} \left(a(x, t) \frac{\partial^\alpha u}{\partial x^\alpha} \right) \right|^2 + \left| \frac{\partial^\alpha u}{\partial x^\alpha} \right|^2 \right] \, dx \, dt, \] (2.10)

and \(F \) is the Hilbert space with norm given by

\[\|f\|_F^2 = \int_Q (1-x)^{\nu} |f|^2 \, dx \, dt, \] (2.11)

where \(\nu \) is an arbitrary number such that \(0 < \nu < 1 \). Using the energy inequalities method proposed in [18], we establish an energy inequality

\[\|u\|_E^2 \leq C_1 \|Lu\|_F^2 \] (2.12)

and we show that the operator \(L \) has the closure \(\overline{L} \).

Definition 1 A solution of the operator equation \(\overline{L}u = F \) is called a strong solution of the problem (1.1) – (1.8).

Inequality (2.12) can be extended by

\[\|u\|_E^2 \leq C_1 \|\overline{L}u\|_F^2, \quad \text{for all } u \in D(\overline{L}). \] (2.13)

From this inequality, we obtain the uniqueness of a strong solution if it exists, and the equality of sets \(R(\overline{L}) \) and \(\overline{R(L)} \). Thus, to prove the existence of a strong solution of the problem in equations (1.1)–(1.8), it remains to prove that the set \(R(L) \) is dense in \(F \).
3. An energy inequality and its consequences

Theorem 1 For any function $u \in D(L)$ we have the a priori estimate

$$\|u\|_E^2 \leq k \|Lu\|_F^2,$$ \hspace{1cm} (3.1)

where

$$k = \exp(cT) \max \left(\left(\frac{2\alpha}{(1-\nu)} \right)^2 + \frac{5}{4} \right) \min \left(\frac{1}{4}, \delta \right)$$ \hspace{1cm} (3.2)

and

$$\delta = c_4' - 4cc_3 + 6c^2c_2' - 4c^3c_1 + c^4a_1 > 0,$$ \hspace{1cm} (3.3)

with the constant c satisfying the region

$$\left\{ \sup \left[\frac{1}{a} \frac{\partial a}{\partial t} - \sqrt{\left(\frac{\partial a}{\partial t} \right)^2 - \frac{1}{a} \frac{\partial a}{\partial t}} \right] < c < \inf \left[1 + \frac{1}{a} \frac{\partial a}{\partial t} - \sqrt{\left(\frac{\partial a}{\partial t} \right)^2 - \frac{1}{a} \frac{\partial a}{\partial t} + 1} \right], \right.$$ \hspace{1cm} (3.4)

$$a_0c^3 - c_1c(3c + 2) + c_2' (3c + 1) - c_3 \geq 0,$$

$$\delta = c_4' - 4cc_3 + 6c^2c_2' - 4c^3c_1 + c^4a_1 > 0$$

Proof Denote

$$Mu = (1 - x) \frac{\partial^4 u}{\partial t^4} + \alpha J \frac{\partial^4 u}{\partial t^4},$$

where

$$J u = \int_0^x u(\xi, t) d\xi.$$

We consider the quadratic formula

$$\text{Re} \int_0^\tau \int_0^1 \exp(-ct) \mathcal{L} u M u dx dt,$$ \hspace{1cm} (3.5)

with the constant c satisfying condition (3.4); obtained by multiplying equation (1.1) by $\exp(-ct) \mathcal{L} u M u$; and integrating over Q^τ, where $Q^\tau = (0, 1) \times (0, \tau)$, with $0 \leq \tau \leq T$, and by taking the real part. Integrating by parts α times in formula (3.5) with the use of boundary conditions in equations (1.6), (1.7), and (1.8), we obtain

$$\text{Re} \int_0^\tau \int_0^1 \exp(-ct) \mathcal{L} u M u dx dt =$$ \hspace{1cm} (3.6)
\[\int_0^\tau \int_0^1 \exp(-ct)(1-x)^2 \left| \frac{\partial^4 u}{\partial t^4} \right|^2 dx \, dt + \]
\[2\text{Re} \int_0^\tau \int_0^1 \exp(-ct) \left(\frac{\partial^2 a(x,\tau)}{\partial t^2} - 2c \frac{\partial a(x,\tau)}{\partial t} + c^2 a(x,\tau) \right) \frac{(1-x)}{2} \frac{\partial}{\partial t} \left(\frac{\partial^\alpha u(x,\tau)}{\partial x^\alpha} \right) \frac{\partial^\alpha u(x,\tau)}{\partial x^\alpha} \, dx - \]
\[4 \int_0^\tau \int_0^1 \exp(-ct) \left(\frac{\partial^2 a(x,\tau)}{\partial t^2} - 2c \frac{\partial a(x,\tau)}{\partial t} + c^2 a(x,\tau) \right) \frac{(1-x)}{2} \frac{\partial}{\partial t} \left(\frac{\partial^\alpha u(x,\tau)}{\partial x^\alpha} \right) \, dxdt - \]
\[\int_0^1 \exp(-ct) \left(\frac{\partial^3 a(x,\tau)}{\partial t^3} - 3c \frac{\partial^2 a(x,\tau)}{\partial t^2} + 3c^2 \frac{\partial a(x,\tau)}{\partial t} - c^3 a(x,\tau) \right) \frac{(1-x)}{2} \frac{\partial^\alpha u(x,\tau)}{\partial x^\alpha} \, dx + \]
\[2 \int_0^\tau \int_0^1 \exp(-ct) \left(\frac{\partial^2 a(x,\tau)}{\partial t^2} - ca(x,\tau) \right) \frac{(1-x)}{2} \frac{\partial}{\partial t} \left(\frac{\partial^\alpha u(x,\tau)}{\partial x^\alpha} \right) \, dx + \]
\[\int_0^\tau \int_0^1 \exp(-ct) \left(\frac{\partial^4 a}{\partial t^4} - 4c \frac{\partial^3 a}{\partial t^3} + 6c^2 \frac{\partial^2 a}{\partial t^2} - 4c^3 \frac{\partial a}{\partial t} + c^4 a \right) \frac{(1-x)}{2} \frac{\partial^\alpha u}{\partial x^\alpha} \, dxdt + \]
\[2 \int_0^\tau \int_0^1 a \exp(-ct) \left(\frac{(1-x)}{2} \frac{\partial^2}{\partial t^2} \left(\frac{\partial^\alpha u}{\partial x^\alpha} \right) \right) \, dxdt. \]

By substituting the expression of Mu in formula (3.5), using elementary inequalities and the inequality
\[\int_0^1 \left| f \frac{\partial^\alpha u}{\partial^\beta x^\beta} \right|^2 dx \leq \frac{4}{(1-x)^\nu} \int_0^1 (1-x) \left| \frac{\partial^4 u}{\partial t^4} \right|^2 dx, \text{ where } 0 < \nu < 1, \quad (3.7)\]
yields
\[\text{Re} \int_0^\tau \int_0^1 \exp(-ct) L u M dx \, dt \leq \left(\frac{4a^2}{(1-x)^\nu} + 1 \right) \int_0^\tau \int_0^1 \exp(-ct) (1-x)^\nu |Lu|^2 \, dxdt + \]
\[\frac{1}{2} \int_0^\tau \int_0^1 \exp(-ct) (1-x) \left| \frac{\partial^4 u}{\partial t^4} \right|^2 \, dxdt. \quad (3.8)\]

From equation (1.1), we have
\[\frac{1}{4} \int_0^\tau \int_0^1 \exp(-ct) \left(\frac{(1-x)}{2} \left| \frac{\partial^\alpha u}{\partial x^\alpha} \right|^2 \right) \, dxdt \leq \frac{1}{4} \int_0^\tau \int_0^1 \exp(-ct) (1-x) |Lu|^2 \, dxdt + \]
\[\frac{1}{2} \int_0^\tau \int_0^1 \exp(-ct) \left(\frac{(1-x)}{2} \right| \frac{\partial^4 u}{\partial t^4} \right|^2 \, dxdt. \]

Consequently, we obtain
\[\int_Q \left(\frac{(1-x)}{2} \left| \frac{\partial^4 u}{\partial t^4} \right|^2 + \left| \frac{\partial^\alpha u}{\partial x^\alpha} \right|^2 \right) \, dxdt \leq \frac{\exp(cT) \max \left(\left(\frac{2a}{(1-x)^\nu} \right)^2 + \frac{\delta}{4} \right)}{\min \left(\frac{1}{4}, \delta \right)} \int_Q (1-x)^\nu \left| f \right|^2 \, dxdt. \quad (3.9)\]
Lemma 1 The operator L from E to F admits a closure.

Proof Suppose that $(u_n) \in D(L)$ is a sequence such that

$$u_n \longrightarrow 0 \text{ in } E,$$ \hspace{1cm} (3.10)

and

$$Lu_n \longrightarrow f \text{ in } F,$$ \hspace{1cm} (3.11)

We must show that $f = 0$.

Introducing the operator

$$L_0 v = \frac{\partial^4 v}{\partial t^4} + (-1)^\alpha \frac{\partial^\alpha}{\partial x^\alpha} \left(a(x,t) \frac{\partial^\alpha v}{\partial x^\alpha} \right),$$ \hspace{1cm} (3.12)

defined on the domain $D(L_0)$ of function $v \in L^2(Q)$ verifying

$$v(x,0) = \frac{\partial v(x,0)}{\partial t} = \frac{\partial^2 v(x,T)}{\partial t^2} = \frac{\partial^3 v(x,T)}{\partial t^3} = 0,$$
$$\frac{\partial^i v(0,t)}{\partial x^i} = 0, \text{ for } 0 \leq i \leq \alpha - 1,$$
$$\frac{\partial^i v(1,t)}{\partial x^i} = 0, \text{ for } 0 \leq i \leq \alpha - 2,$$ \hspace{1cm} (3.13)

we note that $D(L_0)$ is dense in the Hilbert space obtained from the completion of $L^2(Q)$ with respect to the norm

$$\|f\|_F^2 = \int_Q (1-x)^\nu |f|^2 \, dxdt.$$ \hspace{1cm} (3.14)

Additionally, since

$$\int_Q (1-x)^\nu f\, \nu dxdt = \lim_{n \rightarrow \infty} \int_Q L_0 u_n [(1-x)^\nu \, \nu] \, dxdt = \lim_{n \rightarrow \infty} \int_Q u_n L_0 [(1-x)^\nu \, \nu] \, dxdt = 0,$$ \hspace{1cm} (3.15)

this holds for every function $v \in D(L_0)$, and yields $f = 0$.

Theorem 2 The priori estimate in Theorem 1 can be extended to include all functions u, i.e.

$$\|u\|_E^2 \leq k \|Lu\|_F^2, \forall u \in D(L),$$ \hspace{1cm} (3.16)

Hence we obtain the following corollary.

Corollary 1 A strong solution of the problem in equations (1.1)–(1.8) is unique if it exists, and depends continuously on f.

Corollary 2 The range $R(L)$ of the operator L is closed in F, and $R(L) = \overline{R(L)}$.

\[\square \]
4. Solvability of the problem

To prove the solvability of problem in equations (1.1)–(1.8), it is sufficient to show that \(R(L) \) is dense in \(F \). The proof is based on the following lemma.

Lemma 2 For all \(\omega \in L^2(Q) \),

\[
\int_Q (1 - x) L u \cdot \overline{\omega} dx dt = 0,
\]

(4.1)

then \(\omega = 0 \).

Proof Equality (4.1) can be written as

\[
- \int_Q \frac{\partial^4 u}{\partial t^4} (1 - x) \overline{\omega} dx dt = (-1)^\alpha \int_Q \frac{\partial^\alpha}{\partial x^\alpha} \left(a(x, t) \frac{\partial^\alpha u}{\partial x^\alpha} \right) (1 - x) \overline{\omega} dx dt
\]

(4.2)

If we introduce the smoothing operators with respect to \(t \) [24, 20, 14, 3], \(J^{-1}_\xi = \left(I + \xi \frac{\partial}{\partial t} \right)^{-1} \) and \((J^{-1}_\xi)^* \), then these operators provide the solutions of the respective problems

\[
\xi \frac{dg_\xi (t)}{dt} + g_\xi (t) = g(t),
\]

(4.3)

\[
g(t)|_{t=0} = 0,
\]

and

\[
-\xi \frac{dg_\xi^* (t)}{dt} + g_\xi^* (t) = g(t),
\]

(4.4)

\[
g(t)|_{t=T} = 0.
\]

The operators also have the following properties: for any \(g \in L_2(0,T) \), the function \(g_\xi = \left(J^{-1}_\xi \right)^* g \) and \(g_\xi^* = \left(J^{-1}_\xi \right)^* g \) are in \(W_2^1(0,T) \) such that \(g_\xi|_{t=0} = 0 \) and \(g_\xi^*|_{t=T} = 0 \). Moreover, \(J^{-1}_\xi \) commutes with \(\frac{\partial}{\partial t} \), so

\[
\int_0^T |g_\xi - g|^2 dt \rightarrow 0 \quad \text{and} \quad \int_0^T \left| g_\xi^* - g^* \right|^2 dt \rightarrow 0 \quad \text{for} \quad \xi \rightarrow 0.
\]

Now, for given \(\omega(x,t) \), we introduce the function

\[
v(x,t) = -\alpha (1 - x)^{\alpha - 1} \int_0^x \frac{\omega}{(1 - \xi)^\alpha} d\xi + \omega (x,t).
\]

Integrating by parts, we obtain

\[
(1 - x) v + \alpha Jv = (1 - x) \omega, \quad \text{and} \quad \int_0^x v(x,t) \, dx = 0.
\]

(4.5)

Then from equality (4.2), we have

\[
- \int_Q \frac{\partial^4 v}{\partial t^4} N \overline{\omega} dx dt = \int_Q A(t) u \overline{\omega} dx dt,
\]

(4.6)
where $Nv = (1 - x)v + \alpha Jv$, and $A(t)u = (-1)^\alpha \frac{\partial^\alpha}{\partial x^\alpha} \left(u(x, t) \frac{\partial^\alpha u}{\partial x^\alpha} \right)$.

Putting $u = \int_0^1 \int_0^h \int_\xi^T \exp (ct) v^*_\xi (\tau) \, d \tau d \xi d \eta dh$ in (4.6), and using (4.4), we obtain

$$- \int_Q \exp (ct) v^*_\xi Nvd\xi dt = \int_Q A(u) v^*_\xi dxdt - \xi \int_Q A(t) u \frac{\partial^4 v^*_\xi}{\partial t^4} dxdt. \quad (4.7)$$

Integrating by parts each term in the right-hand side of (4.7) and taking the real parts, we have

$$\text{Re} \left(\int_Q A(u) u v^*_\xi dxdt \right) \geq 0, \quad (4.8)$$

$$\text{Re} \left(- \xi \int_Q A(t) u \frac{\partial^4 v^*_\xi}{\partial t^4} dxdt \right) \geq - \xi M, \quad (4.9)$$

where

$$M = 16 \int_Q \frac{(1 - x)}{2} \left| \frac{\partial^4 v^*_\xi}{\partial t^4} \right|^2 dxdt + \int_Q \frac{(1 - x)}{2} \left(\frac{\partial^4 a}{\partial t^4} \right)^2 dxdt +$$

$$4 \int_Q \frac{(1 - x)}{2} \left(\frac{\partial^3 a}{\partial t^3} \right)^2 \left| \frac{\partial^\alpha^1 u}{\partial x^\alpha^1} \right|^2 dxdt +$$

$$6 \int_Q \frac{(1 - x)}{2} \left(\frac{\partial^2 a}{\partial t^2} \right)^2 \left| \frac{\partial^\alpha^2 u}{\partial x^\alpha^2} \right|^2 dxdt +$$

$$4 \int_Q \frac{(1 - x)}{2} \left(\frac{\partial a}{\partial t} \right)^2 \left| \frac{\partial^\alpha^3 u}{\partial x^\alpha^3} \right|^2 dxdt + \int_Q \frac{(1 - x)}{2} \left| \frac{\partial^\alpha^4 u}{\partial x^\alpha^4} \right|^2 dxdt. \quad (4.10)$$

Now, using inequalities (4.8) and (4.9) in equation (4.7), we have

$$\text{Re} \left(\int_Q \exp (ct) v^*_\xi Nvd\xi dt \right) \leq 0, \quad (4.11)$$

then for $\xi \rightarrow 0$, we obtain

$$\text{Re} \left(\int_Q \exp (ct) v^*_\xi Nvd\xi dt \right) \leq 0. \quad (4.12)$$

We conclude that $v = 0$, hence, $\omega = 0$, which ends the proof of the lemma.

Theorem 3 The range $R(L)$ of L coincides with F.

Proof Since F is a Hilbert space, we have $R(L) = F$ if and only if the relation

$$\int_Q (1 - x)^{\alpha} E \cdot J dxdt = 0 \quad (4.13)$$

305
for arbitrary function $u \in E$ and $f \in F$, implies that $f = 0$.

Putting $u \in D(L)$ in relation (4.13), taking $\omega = \frac{f}{(1-x)^{\nu-1}}$, and using lemma 7, we obtain $\omega = \frac{f}{(1-x)^{\nu-1}} = 0$, then $f = 0$.

References

