ISTANBUL KONÜRBASYONUNUN YENİ HABİTAT ADACIĞINDA CBS
TABANLI JEOEKOLOJİ PLANLAMA ANALİZİ

The Analysis of Geoecologic Planning with Based on GIS in New
Habitat Islet of Istanbul Conurbation

Dr. Deniz EKİNÇİ
Emin SÖNMEZ

Özet

Bu çalışma, İstanbul konürbasyonunun doğu bölümündeki yerleşmelerin uygunluğunu
tespiti için CBS tabanlı bir jëoekoëlojik planlama analizidir.

Bölgenin yerleşim için uygunlk derecelerini anlamada coğrafi bilgi sistemleri kullan

Anahtar Kelimeler: Jëoekoëlojik Planlama Analizi, Coğrafi Bilgi Sistemleri, Uzaktan Algılama, İstanbul.

Abstract

This study is an analysis of the GIS based geoecologic planning for fixation the suit
ability of settlements in eastern part of Istanbul conurbation.

To understand the suitability degrees of district for settlement, to analysis them, and
to determine the most appropiate quarters in the existing study area, geographic informa
tion systems were used. impressive factors in the analysis have been identified, classified
going to their features and, were given a GIS degree. Then these factors have been used to evaluate the appropriateness of quarter for settlements. As a result of those suitability map has been prepared concerning settlement.

Key Words: Analysis of Geoecologic Planning, Geographic Information Systems, Remote Sensing, Istanbul.

Giriş:

Yerküre ve insan arasındaki ilişkileri inceleyen coğrafyanın, teorik bilgilerinin toplumla
buluştuğu en seckin uygulama alanlarından birisi de multidisipliner özellikleri jëoekoëlojî
kapasında yapılan planlama çalısmalarıdır. Bu çalısmalar mekânın amaça en uygun şekilde
düzenlenmesi şeklinde olabileceğini gibi (Erinç, 1959) belirli bir amaç için uygun olup olama

* İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü
** İstanbul Üniversitesi Sosyal Bilimler Enstitüsü Coğrafya Anabilim Dalı

Hızlı nüfus artış ve bu artışın meydana getirdiği baskı, son yıllarda İstanbul’da yeni nüfus toplanma alanlarına gereksinim duymuştur. Burası, Tekirdağ’dan başlayıp Kocaeli’ne kadar uzanan İstanbul merkezli büyük bir aglomerası sahası olup, çalışmanın başlığında birleşik şehirler anlamında konüsbasyon olarak ifade edilmiştir.

Belirtilden bu şehir alanında yeni nüfus toplanma lokasyonlarından birisi de inceleme mize konu olan ve yeni habitat adıçığı olarak işaret ettigimiz sahadır (Foto 1).

Foto 1: Inceleme Alanındaki Yeni Yapılar ve Arkasında Uzanan Kullanılmayan Açık Araziler

Burası, İstanbul Konüsbasyon’unun, yıllar önce bir aş yöreni iken günümüzde iç yöre konumunu almış, doğru yarısında (Şekil 1), İstanbul İlî, Pendik, Tuzla, Kartal, Sultanbeyli İlçelerinin sınırını içerisinde kalmaktadır. Inceleme alanının, Güneydoğu’da Akören, Güneybatı’da Fizzi Çakmak, Kuzyedoğu’da ise Mimar Sinan yerleşmeleri bulunmaktadır.
Şekil 1: Çalışma Sahasının Konumu

Yerleşkileri bakımından, Belen Tepe'nin doğu'undan başlayan sınır Battı'da Aydos Dağı'na, Değirmen Tepe'nin güneyinden başlayan sınır ise Bayrak Tepe'nin Kuzeyine kadar uzanır. E0 ve D100 Karayolları ile İstanbul'a 45, İzmit'e 40 km uzaktadır. İnceleme alanı Coğrafi Koordinat Sistemine göre de 29° 15' 0" ve 29° 30' 0" doğu meridyenleri ile 40° 52' 40" ve 41° 00' 0" kuzey paralelleri arasında yer almaktadır.

Bu hayat adacığı rolüne'nin esas görünümünü, yükseltisi 100-200 m. arasında değişen bir plato meydana getirir. Bu plato üzerinde kısmen genç deformasyonların, kısmen de litolojik farklıların bir sonucu olarak farklı kademelerde tepeler bulunur. Çalışma sahası akarsu ağı tarafından parçalanmıştır. Bu drenaj ağı bazı unsurları zayıf direnç sahalarına uyum sağlamış subsektantlar olmakla birlikte, genel olarak genç örtüden temele kopia edilmiş bir özellik gösterir. İklim koşulları bakımından, yöre bağımsı subtropikal, kısı yağışlı makroklimalı ve daha ayırın adıyla Akdeniz İkliminin etkisi altındadır.

Planlamada Etkili Olan Başlıca Faktörler:

Coğrafi ortam veya üzerinde yaşanılan saha, bir yandan konum, topografiya, jeolojik yapı ve litolojik karakterler, iklim, toprak, vejetasyon, hidrolojik özellikler; bir yandan da yerleşme tarihi, nüfus, sosyal karakterler, tarihi gelişim, idari ve hukuki sorunların etki ve izleri gibi birbirine sıkı sebep ve sonuç ilişkileriyle bağlı fiziki ve beşeri faktörlerden oluşan kompleks bir yapıdır. Bu karmaşık ölogelli nedeniyle bir yörenin sorunları ele alınır, bu sorunlara çözüm yolları teklif edilirken, muhtemel gelişmeleri gereği gibi değerlendirilir.
için her şeyden önce bu kompleks yapının tümü ve onu oluşturan unsurlar arasındaki ilişkiler hakkında değerlendirme yapmak zorunludur (Eric, 1977).

Kompleks bir yapıya sahip çalışma sahasının, yerleşme için uygunluk sınıflarının araştırıldığı bu analizde; sahanın yüksekliği, eğim, baltı, litoloji, arazi kullanım özellikleri ile fay hatından, akarsu hatlarından, ulaşım ağlarından ve hava alanından uzaklık gibi faktörler üzerinde durulmuştur¹. Bunulma beraber sahanın özelliklerinden olup fakat incelememizde kullanılmayan bazı faktörler de bulunmaktadır. Örneğin; sahanın çok büyük olması ve iklim koşullarının kendi içinde büyük farklılarla ayrılmaması nedeniyle analizde iklim özelliklerini kullanılmamıştır. Bunun gibi halihazırda tarla tarımı faaliyetlerinin olmasına nedeniyle de toprak özellikleri dikkate alınmamıştır. Inceleme alanının etkili faktörler bakımından özellikleri aşağıdaki gibidir.

Yükseğti bakımından, en yüksek noktaşı 537 m yükseğtiye sahip Aydos Dağı'nın zirvesi meydana getirir. Yükseğtiinin en düşük olduğu kısımda Aydın'ın yerleşmesinin güneydoğusunda ki 20 m seviyesidir (Şekil 2). 100 metreye kadar olan yükseğti sahası tüm alanın % 30'unu, 100 ila 200 metre seviyeleri arası % 52,5 in, 200 ila 300 metre seviyeleri arası ise % 15,5 in teşkil etmektedir. 300 metre den yüksek yerlerin oranı ise % 2 dir.

¹ Belirtilen etkili faktörlerin bu bölümde, inceleme alanındaki durumu ve genel özellikleri, Planlama Eşik Analizi bölümünde ise, araştırma açısından önemi ve çalışmamızda etkileri bakımından üzerinde durulmuştur.

Şekil 2: Çalışma Sahasının Yükseği Seviyeleri Haritası
Çalışma alanının ortalama yükseltsi 151,8 m'dir. Esas itibariyle haşif dalgı bir topografa sekli arz eden bu yüksekli seviyesi bir plato halindedir. Bu plato üzerinde genel görünümde farklı olarak yüksekli meydana getiren tepeler yüksekler. Bunların en yüksek olanı belirtildiği gibi Aydos Dağı'dır (538 m.). Bundan başka yüksekli seviyelerine göre; Kaymakpınar Tepe (192 m.), Eriklı Tepe (193 m.), Konak Tepe (198 m.), Gözdağ Tepe (201 m.), Yatak Tepe (201 m.), Çatal Dağı (202 m.), Kambe Tepe (204 m.), Pınar Tepe (217 m.), Kocabayır Tepe (224 m.), Pınar Tepe (231 m.), Sığırçılmaç Tepe (244 m.), Ayvalı tepe (251 m.), Domuz Tepe (253 m.), Naibant Tepe (263 m.), Kel Tepe (279 m.), Kocabayır Tepe (288 m.), Kuçukballıca Tepe (292 m.), Belen Tepe (304 m.), Büyükballıca Tepe (311 m.), Kara Tepe (323 m.), Yol Tepe (334 m.), Çatal Dağı (361 m.) diğer dikkat çeken yükseltlerdir.

Çalışma sahasında eğim değerleri 0 ile 75,8 ° arasında değişir. En yüksek eğime sahip yerlerde eğim değerleri 75,8 ° yi bulmaktadır (Şekil 3) ancak bu yüksek değerler sahanın çok küçük bir kısmında (% 0,05) görülür.

Şekil 3: Çalışma Sahasının Eğim Haritası

15° nin üzerindeki dik ve çok eğimli sahalar tüm alanın % 4 ün oluşturmaktadır. 5° ye kadar eğime sahip olan yerlerin payı % 75 dir. olan sahalara aittir. Bu eğim değeri ile 15° arasındaki saha ise kalan kısmını meydana getirmektedir.

Eğim değerlerinin büyük olduğu kısımlar, genellikle kısa mesafeler dahilinde birden yüksekli meydana getiren tepelerin yamaçlarından görülür. Bunun dışında kalan ve sahanın
büyük bölümünü teşkil eden hafif dalgalı rölyef üzerinde ise, eğim değerleri büyük değerlere ulaşmaz. Sah olan ortalama eğiminin 3° olması bu durumu açıkça ifade etmektedir.

Baki sınırları bakından yalnızca ana yönlere göre yapılan değerlendirmede (Şekil 4) en büyük alanın (% 72,04 %) güneye baktığı görülmektedir. Bu yönü kuzeye bakan sahalar (%17,74 %) takip eder. Doğu yönüne bakan sahalar tüm yüzölçümün % 5,13 ünü, batı'ya bakan sahalar ise % 5,10 unu meydana getirir.

Şekil 4: Çalışma Sahasının Baki Haritası

Çok büyük bir alan kaplamamasına rağmen inceleme alanı litolojik özellikleri bakımdan çok çeşitli bir yöredir. Burada Paleozoik'ten Neogen seviyelerine ve Pleistosen depolarına kadar birçok yapı görüldüğü gibi, granitten, kuvarsitlere, arkozlara, killi şistlere, kalkerlere ve depoların değişik türlerine kadar çok çeşitli kayacıl ile temsil edilmiştir. Çalışma sahasında Paleozoik yaşlı birimler en geniş yayılış alanına sahip olarak bulunur (Şekil 5).
İSTANBUL KÖNÜRBASYONUN YENİ HABITAT ADACIĞINDA CBS TABANLI JEOĞRAFYA PLANLAMA ANALİZİ

Şekil 5: Çalışma Sahasının Litoloji Haritası (Yağmur, 1976; Onalan, 1982)

Silüriyen-Devoniyen yaşlı kuvarslı konglомерa birim, aynı yaştağı arkoz ve kuvarsıt birimleri, yine bu aralıkta şist, gre, grova, kalker birimi tüm litolojik birimlerin % 68,3'unu meydana getirmektedir. Bunların dışında Üst Kretase yaşlı granit birimi % 15,59; Üst Miyosen-Pliyosen yaşlı çakıl, kum, kil birimi % 12,13; Kuvarsıt yaşlı aluvyonlar ise % 4,25'unu meydana getirmektedir.

Aluvyonlar Genç Kuvaterner'de (Holosen) mevcut olan çeşitli akarsu yataklarında ve Omerli Baraj Gölü çevresinde depolanmış, gevşek blok-çakıl-kum-kil'den oluşmuş çökellerdir. Genelde çaprız tabakalı devresel çökelerinde olup, kalınlıklarına ve kendini oluşturulan malzemeleri çevresel kayaçların ve akarsuların fiziksel, geometrik özelliklerine bağlıdır.

Devoniyen yaşlı gre, konglomer, kılıfı şist birimi baskı olarak çakıl taş ve turbiditik kum taşı ara tabakalı bir istiften oluşmuştur. İstif içerişinde ince tabakalı ve paralel laminalı şeyl ve kılıf şistler bulunur (Oktay vd., 1994). Bu birim Omerli Baraj Gölü'nün doğu ve batı kısımlarında bir şerit teşkil edecek şekilde ve Çatal Dağı'nın doğusunda bulunur.

Silüriyen- Ordovisiyen yaşlı kuvarsıtlar genelde pembe-boz renkli kuvars arenitten yapılmış bir istif özelliğindedir ve yaygın olarak başta Aydos Dağı olmak üzere yükselti teşkil eden tepeler bu birim üzerindedir.

Çalışma sahasının fay hattından uzaklık özellikleri açısından ortaya konulması için saha kuzey ve güney ekseninde 3000 metre aralıklarla yaklaşık her biri yaklaşık 16 km² alan kaplayan zonlara ayrılmıştır (Şekil 6).

Şekil 6: Çalışma Sahasının Fay Hattından Uzaklık Haritası

Çalışma sahasının başlıca akarsuları; Köy Deresi, Büyük Göl Deresi, Gökçe Dere, Büyük Dere, Kım Dere, Uzun Dere, Gökcabeyli Deresi, Bostan Deresi ve Doğan Deresidir. Bu akarsulara katılan kolları ile birlikte inceleme alanının drenaj sistemini teşkil ederler (Şekil 7).

![Şekil 7: Çalışma Sahasının Akarsu Hatlarından Uzaklık Haritası](image)

Akarsu hatlarından uzaklık bakımından inceleme alanında tüm yüzölçümün % 28,5'i akarsulara 50 metre yakınında, % 71,5'i ise bu mesafeden uzak bulunan sahalara karşılık gelmektedir.

Çalışma Sahasının Ulaşım Hatlarından Uzaklık Özellikleri başlığı altında sahada mevcut bulunan karayolu ulaşım hatlarının uzaklık özellikleri üzerinde durulmuştur. İnceleme alanında E0, D100 ve diğer ana karayolları ile birlikte 151,4 km uzunluğa sahiptir (Şekil 8).
İşaretler

Şekil 8: Çalışma Sahasının Ulaşım Hatlarından Uzaklık Haritası

İnceleme alanında karayoluna 1 km uzaklığına olan saha tüm alanın % 67,22 si gibi büyük bir oranının meydana getirir. Bu bakımından ikinci büyük pay (% 23,99) 1 – 2 km arasındaki uzaklığı sahip kısımdadır. Sahânın yalnızca % 8,79 u karayollarından 2 km uzakta bulunur. Bu sahalar genellikle yüksek tepelik alanlar olup genellikle orman örtüsü ile kaplı bulunur.

Havaalanından uzaklık özellikleri bakımından, inceleme alanında Kurtköy’nün hemen kuzeyinde Sabiha Gökçen Havaalanı bulunur (Şekil 9).

Sabiha Gökçen Havaalanının yakın çevresini teşkil eden ilk 3 km çaplı çevresi tüm sahanın % 18,98 iine karşılık gelmektedir. 3 – 10 km mesafe % 35,85; 10–16 km % 25,37; bu mesafeden uzak sahalar ise tüm sahanın % 19,8 iine meydana getirmektedir.
İşaretler

Havaalanından Uzaklık (m)

- 0 - 3000
- 3001 - 6000
- 6001 - 10000
- 10001 - 20000
- 20001 - 30000
- 30001 - 60000
- 60001 - 100000

Şekil 9: Çalışma Sahasının Havaalanından Uzaklık Haritası

Çalışma sahasının alanı alanının özellikleri, güncel ve çözünürlük bakımından çalışmamızın amaçına uygun olması bakımından, 2006 yılı Mayıs ayı Landsat ETM uydu görüntüleri üzerinden belirlenmiştir. Orman alanları, sanayi bölgeleri, karayolu sistemleri, su koruma havzaları, sık dokulu ve gevşek dokulu yerleşim birimleri ile açık alanlar bakımından sınıflandırılmıştır (Şekil 10).

İnceleme alanında ormanlar tüm sahanın %33,32 sini; sık dokulu yerleşmeler % 4,35 in; gevşek dokulu yerleşmeler % 5,58 in; su koruma saharları % 1.73 ün, Sanayi bölgeleri % 1.88 in; açık alanlar ise % 53,14 ün meydana getirmektedir.
Orman alanları daha çok sahanın kuzeydoğusunda ve Aydos Dağı, Kel Tepe, Kocabayır Tepe ile Çatal Dağının bulunduğu kısımlarda bulunur. Bununla beraber arazi incelemelerinde orman alanlarının tahrip edildiği, kapalılık oranlarının azaltıldığı görülmektedir (Foto 2).

Foto 2: İnceleme Alanındaki Orman Alanlarının Genel Görünümüne İşaret Eden Bir Görünüm (Aydos Dağının Doğu Kısımı)
Yerleşim birimlerinin özellikle de plansız ve kontrolsüz eski dönemlerden kalmış olanlar, akarsu vadisi boyunca iç kısımlara kadar sökülmuştur.

Foto 3: Inceleme Alanındaki Yerleşmelerin Orman Alanlarını İşgal Ettiğini Gösteren Bir Fotograf (Aydos Dağının Bati Kismin, Yerleşmeler Marmara Denizi'ne Bakmaktadır)

Planlama Eşik Analizi:

Silüriyen- Ordovisiyen yaşlı kuvarslı konglomera birimi ise kumtaşı, selay ve kuvarsit merceklerinden oluşan bu birim tektonik deformasyonlardan çok fazla etkilenmiştir. Çok

Beşinci sıraday, ulaşım hatlarında uzaklık faktörü gelmektedir. Ulaşım hatlarına yakınlık, uygunluk bakımından daha elverişlidir. Özellikle trafiğin başında İstanbul'da kendisini fazlasıyla hissettiiren bir olgu olmuştur. Artık konut reklamlarında büyük merkezlerde km cinsinden mesafe yerine zaman bakımından yakınlık vurgusu ön plana çıkmıştır. Bu durum ise karayollarına yakınlik ile bir doğru oranışı bulunmaktadır. Bu konuda belirtilmesi gereken bir diğer özellikle ise TEM otoyolu gibi giriş ve çıkışların kontrollü olarak yapıldığı yollarda bu yolun kenarında yer almak, sız konusu yoldan faydalanabilirlik açısından her zaman ideal yerde bulunmak anlamına gelmemektedir. Çalışmada TEM otoyolu gibi bir ulaşım asının yanında ancak en yakın çıkışın 2,5 km uzagaında yer alan bir tesis, çıkıştan 1 km uzakta, ancak yolun kenarında yer almayan bir tesisten daha uzak durumdadır. Fakat çalışma sahası sınırları içerisinde TEM otoyolunun her iki kenarında da birlik olarak bulunan karayolunun varlığı bu değerlendirilmesi ortadan kaldırır özelliktedir.
<table>
<thead>
<tr>
<th>Etkili Faktör Adı</th>
<th>Faktör Sınıfları</th>
<th>CBS Sınıf Değeri</th>
<th>CBS Ağırlık Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litoloji</td>
<td>Kuvaterner; 70 vyon</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Üst Miyozen: çalı, kum, kil</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Üst Kretase: granit</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Devoniyen: gre, konglomer</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sil.-Ord.; ist, gre, konglomer</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sil.-Ord.; kuvartsit</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sil.-Ord.; karkoz</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sil.-Ord.; kuvarslı konglomer</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Eğim (Derece)</td>
<td>0-5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.01-10</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>10.01-15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.01-25</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.01-50</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.01-75,80</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fay Hattından Uzaklık (Km.)</td>
<td>0-23</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.01-26</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>26.01-29</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29.01-33,20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Yükselti (metre)</td>
<td>20-100</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.01-200</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>200.01-300</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300.01-400</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400.01-500</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500.01-538</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ulaşım Hatlarının Uzaklık (Km.)</td>
<td>0-1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.01-2</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.01-3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.01-3,4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bakı</td>
<td>Kuzey</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Güney</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Doğu</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baki</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Havaalanından Uzaklık (Km.)</td>
<td>0-3000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.01-10</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>10.01-16</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.01-22.6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Akarsu Ağlaraًdan Uzaklık (metre)</td>
<td>0-50</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>50.01-1700</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Bu sonuçlara göre, etkileyen faktörlerin sırası ve sıklığı durumuna etkileyen baktı faktörü izler. Ana yönler bakımından güneş bakan yerleşmelerde ikamet etmek en fazla, kuzeye bakanlarda ise en az tercih ediliridir. Doğu ile batı yönleri hemen hemen eşit olmakla birlikte doğru bakan yön bu bakımından bir miktar daha elverişli özelliklere gösterir.

Bu başlık altında değerlendirilmesi gereken fakat hesaplama daha farklı grupta yer alan arazi kullanım özelliklerinin dikkate alınması ise aşağıdaki gibidir (Çizelge 2).

Çizelge 2: Arazi Kullanım Sınıfları ve CBS Değerleri

<table>
<thead>
<tr>
<th>Etki Faktör</th>
<th>Sınıflar</th>
<th>CBS Sınıf Değeri (1)</th>
<th>CBS Sınıf Değeri (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arazi Kullanım Özellikleri</td>
<td>Orman</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Şık dokulu yerleşim alanı</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Gevşek dokulu yerleşim alanı</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Su koruma havası</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Açık alan</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sanayi bölgesi</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Nihai analiz sonucu bakımından ormanlar ve su koruma havzalari her durumda yerleşme için önerilmeşen sahaları meydana getirir. Her iki grup yerleşim birimi ile sanayi tesislerinin kuruluş yerlerinin uygunluk durumunu ortaya koymak için birinci analizde dikkate alınmamışlardır. İkinci analizde ise yalnızca boş, açık alanlar dikkate alınarak bu saha üzerindeki durum incelenmiştir.

Sonuç:

Çalışmanın sonucunda iki farklı uygunluk haritası oluşturulmuştur. Bunlardan birincisinde hali hazırda kurulu bulunan yerleşmelerin de uygunluk sınıfları gösterilmiştir. İkincisinde ise yalnızca açık arazilerin bu bakımdan derecelendirilmesi yapılmıştır.

Birinci haritaya göre (Şekil 11); orman ve su koruma havzaları dışında kalan tüm sahalar sınıflandırılmıştır.
Şekil 11: Çalışma Sahasının Yerleşim Bakımdan Uygunluk Haritası (halihazirdaki yerleşmeler dahil)

Buna göre tüm sahanın % 35 i yerleşme için elverişli olmayan bir yüz ölçüme sahiptir. % 6 si tercih edilebilir % 38, 51 i uygun; % 20,39 u ise çok uygun özellikler gösterir (Şekil 12).

Şekil 12: Çalışma Sahasının Yerleşim Bakımdan Uygunluk Sınıflarının Dağılışı (halihazirdaki yerleşmeler dahil)

Yalnızca kullanılabilir özellikleri olan, açık arazilerin sınıflandırıldığı analiz haritasına göre (Şekil 13), tüm sahanın % 46,87 i yerleşme için elverişli olmayan bir yüz ölçüme sa-
hıptir. % 17,37 si tercih edilebilir % 19,01 i uygun; % 16,75 ise çok uygun özellikler gösterir (Şekil 14).

İŞARETLER
Uygunluk Derecesi

Çok Uygun
Uygun
Tercih Edilebilir
Uygun Değil

Şekil 13: Çalışma Sahasının Yerleşim Bakımdan Uygunluk Haritası (Yalnız kullanabilir alanlar)

Şekil 14: Çalışma Sahasının Yerleşim Bakımdan Uygunluk Simflarının Dağılışı (Yalnız kullanabilir alanlar)
Bu uygun alanlar Kabaca E0 otoyolu ile Köy Dere’si tarafından sınırlandırılmış olarak bulunur. Incelene alanın kuzeyinde yer alan ve zemin bakımından en dirençli kısma oluşturulan bu saha jeokoljik planlama bakımından yerleşim için en elverişli kısımdır. Ayrıca alanın otoyola yakın olması ve güneye yüksek kısımda yer alması cazibesini daha da arttırmaktadır.

KAYNAKÇA:

ABDÜSSELAMOĞLU, Ş., 1963. İstanbul Boğazı Doğusunda mostra veren Paleyozoyik arazide stratigrafik ve paleontolojik yeni müşahadeler, M.T.A. Dergisi, s.60.

ATAMAN, T., (2000), Kayı Mekaniğine Giris, Seç Yayın Dağıtım, İstanbul.

BASO, F., BOVE, E., DUMONTET, S., FERRARA, A., PISANTE, M., QUARANTA, G., VE TABERNER, M., 2000, Evaluating Environmental Sensitivity at the Basin Scale Through the Use of Geographic Information Systems and Remotely Sensed data: an Example Covering the Agri Basin (Southern Italy), Catena, V.40, 19-35.

İstanbul Kontrbasyonun Yeni Habitat Adacığında CBS Tabanlı Jeokoloji Planlama Analizi

HOŞGÖREN, M.Y., 2000, jeomorfoloji'nin Ana çizgileri I, Rebel yayncılık, İstanbul.

RIQUELME, F., RAMOS, A., 2005, Land and Water Use Management in Vine Growing by Using Geographic Information Systems in Castilla-la Mancha, Spain, Agricultural Water Management, V.77, 82-95

SICAT, R., CARRANZA, E., NIDUMOLU, U., 2005, Fuzzy Modeling of Farmers' Knowledge for Land Suitability Classification, Agricultural Systems, V. 83, 49-75

SUNGGUR, K.A., 1979, Kayalar ve Ayrışma, İstanbul Üniversitesi Yayınları, No.2624, İstanbul.

www.deprem.gov.tr