FEKE/ADANA KUVARSİTLERİNDEN CAM KUMU ELDE EDİNDE ISIL İŞLEM VE SU İLE ANI SOĞUTMANIN ZENĠİNLEŠTİRMEYE ETKİSİNİN ARAŠTIRILMASI

H. İker PALAMUT
Trakya Cam San. A.Ş., Mersin/Türkiye

Mehmet YILDIRIM ve Suphi URAL
Ç.Ü., Maden Mühendisliği Bölümü, Adana/Türkiye

ÖZET : Bu çalışmada, isıl işlemin ve su ile anı soğutmanın, numunenin öğütme ve flotasyon karakteristikleri üzerine etkileri araştırılmıştır. Orijinal numune, 500 ve 600°C sıcaklıkta 30 dakika ısıtıldıktan sonra anı soğutulmuş numunelerin Bond iş indeksleri deneyel olarak elde edilmiştir. Sonuçlar 600°C'de ısıtılarak anı soğutulmuş numunenin Bond iş indeksinin orijinal numuneye kıyasla %43 azaldığını göstermiştir. Uygulanan isıl işlem, sülfonat flotasyonu Fe₂O₃ atma verimini – 500 mikron boyutlu numune için %10 artırmıştır. Isıl işlem ile, ilmenit mineral yüzeyindeki Fe³⁺ iyonları Fe⁺⁺ iyonlarına yükseltgenerek flotasyon kabiiliyetinin artmasına neden olmuştur.

STUDY OF HEATING AND QUENCHING EFFECTS UPON BENEFICIATION OF FEKE / ADANA QUARTZITE IN GLASS SAND PRODUCTION

ABSTRACT : In this study, effects of heat treatment followed by water quenching on grinding characteristics of the sample were determined. The Bond work indexes of the samples heated at 500°C and 600°C for 30 minutes then quenched were experimentally obtained. It was observed from the results that the Bond work index of the sample heated then quenched decreased 43% in comparison with the unheated original sample. Heating exposure increased Fe₂O₃ recovery in the sulphonate flotation 10% for the sample sized into – 500 microns. Heating exposure, caused to oxidation of Fe³⁺ ions into Fe⁺⁺ ions on the ilmenite mineral surfaces that improved the floatability.
1. GİRİŞ

Bu çalışmanın amacı, Feke/Adana kuvarsitlerinin ısıtma ve suda ani soğutulması sonucu, yoğunme özelliklerinin ve flotasyon ile demir içeriğinin azaltılması olanaklarının araştırılmasıdır.

2. MATERİAL VE METOD
2.1. Materiyal
DeneySEL çalışmalarla kullanılan numune, Feke/Adana Bölgesi Buruşukpınar Mevkii’nde Camış Madencilik A.Ş. adına ruhsatlı ve işletilme olan sahadan açık işletme yöntemi ile üretilmiş cevherdir. Timsili olarak alınan orijinal cevher numunesi, boyut küçültme ve elemelne işlemlerinden sonra analizler ve deneySEL çalışmalar için hazırlandı. Yapılan polarizan mikroskop analizi ile, ana mineralleri kuvars ve ortoklas olan cevherin, tane çevrelerinde serisit dağınık olarak rutil, turmalin, zirkon, kalsit ve limonit içerdği gözlenmiştir. Aynı cevherin daha önce yapılan minerolojik analizlerinde titanyum elementinin kaynağı rutil ve ilmenit olduğu ve alternasyon sonucu limonitleşmeye ve serisitleşmeye gözlemlemiştir (5). Serisit limonit bileşimlerinin HCl asit ile uzaklaştırılabilmesi ancak konsantrre kunda kalan toplam Fe₂O₃’un yaklaşık 1/3’üntü oluşturulmuş kısının HCl asit ile çözülememiştir ve uzaklaştırılmalıdır tesbit

Çizelge 1. Orijinal temsili örnekün kimyasal analizi

<table>
<thead>
<tr>
<th>Element</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>TiO₂</th>
<th>CaO</th>
<th>MgO</th>
<th>Na₂O</th>
<th>K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%)</td>
<td>94,80</td>
<td>1,96</td>
<td>0,21</td>
<td>0,13</td>
<td>0,86</td>
<td>0,54</td>
<td>0,02</td>
<td>0,87</td>
</tr>
</tbody>
</table>

2.2. METOD

Deneysel çalışmaları üç ayrı aşamada yapılmıştır. İlk aşamada optimum yoğunme süresi belirlenerek farklı sıcaklıklarda ısıl işlem uygulanmış ve aniden su ile soğutulmuş numunelere belirlenen optimum yoğunme süresi ile yaş yoğunme uygulanarak yoğunlanmış ürünlerde – 106 mikron boyutlu fraksiyondaki ağırlıkça değişimler belirlenmiştir. İkinci aşamada 500 ve 600°C sıcaklıklarda ısıl işlem ile ani soğutma uygulanmış numuneler ile ısıl işlem uygulanmış numunelerin yoğunlabilirlilik Bond iş indekslerini bulunmaktadır. Üçüncü aşamada – 500 + 106 mikron boyut aralığındaki örnekün 600°C’de ısıtıldıktan sonra demir içeriğini uzaklaştırarak amaciyla flotasyon deneyleri yapılmıştır. Numunelerin ısıtıldıktan sonra Griffin marka 6000 mL hacimli rezistanslı küt firmi kullanılmıştır. Fırın içi sıcaklığı belirlenen sıcaklığa (500 ve 600°C) ulaştıktan sonra numune firna konularak belirlenen sürede tutulmuştur. Bu süre sonunda ısıtılmış numune ani olarak su ile soğutulduktan sonra isıslak numune yeniden 100°C’de kurutuldu ve tartıldı.

Öğütme işleminde, 5000 mL hacimli bilyalı deşirmen kullanılanmıştır. Öğütme ortam olarak seçilen bilyaların çap ve miktarı 2.5 cm (1500 g), 1.9 cm (1500 g) ve 1.3 cm (1200 g) aralığında seçilmiştir. Beslenen numunenin pulp yoğunluğu % 66 kati ve kritik hızın %65’i dönüş hızı olarak seçilmiştir. Elde edilen yoğunlanmış örneklerin tane boyut dağılımları ASTM E 11 (1987) spesifikasyonu anladığı elekt seti ile belirlenmiştir.

Bond iş indeksi deneylerinde, 30.5 x 30.5 cm boyutlarında 70 devir/dakika dönüş hızı olan deşirmen kullanılmıştır. Kuru ortamda yoğuntı McClary olarak 20,125 g bilya ve 2.00 – 0.075 mm aralığında elekt seti kullanılmıştır. İslı işlem uygulanmış ve 500 ile 600°C sıcaklıklarda ısıl işleme tabi tutulmuş –4 mm boyutlu numunelere ayrı ayrı uygulanan kapalı devre kuru yoğunme deneylerine elde edilen sonuçlardan her numune için iş indeksi (Wi) hesaplanmıştır (7).

Çizelge 2. Bond kapalı devre yoğunme testlerinde kullanılan bilyalar

<table>
<thead>
<tr>
<th>Bilya Adedi</th>
<th>Bilya Çapı (mm)</th>
<th>Ağırlık (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>36.8</td>
<td>9094</td>
</tr>
<tr>
<td>67</td>
<td>29.7</td>
<td>7444</td>
</tr>
<tr>
<td>10</td>
<td>25.4</td>
<td>694</td>
</tr>
<tr>
<td>71</td>
<td>19.1</td>
<td>2078</td>
</tr>
<tr>
<td>94</td>
<td>12.7</td>
<td>815</td>
</tr>
<tr>
<td>Toplam :</td>
<td>285</td>
<td>20125</td>
</tr>
</tbody>
</table>
\[W_i = \frac{44.5}{(P_1)^{0.23} x(G_{bp})^{0.82} x \left(\frac{10}{P^{0.5}} - \frac{10}{F^{0.5}} \right)} \]
(Bergstrom, 1985)

\(W_i \) : İş indeksi (kWh/ton)

\(G_{bp} \): 106 \(\mu \)m bazında öğünebilirlik; (-106 \(\mu \)m türün, g/öğütme devir sayısı)

\(P_1 \) : Öğütülebilirlik testi elekt boylutu (106 \(\mu \)m)

\(P \): Net üründen % 80’inin geçtiği elekt boyutu (D\(\text{80}, \mu \text{m} \))

\(F \): Beslenen numunenin % 80’inin geçtiği elekt boyutu (D\(\text{80}, \mu \text{m} \))

\(SEY \) : \[\left(\frac{N - B_{\text{ort}}}{B_{\text{ort}}} \right) \times 100 \]

\(SEY \): (Sirküle eden yük; B\(_{\text{ort}} \): öğütülmüş ürunde -106 \(\mu \)m miktarı, g)

\(N \): 700 mL’lik numunenin ağırlığı (1117.2 gr)

\(IPP \): (Ideal Period Product) N gr numune için sirküle eden yük miktarı % 250 kabul edilerek \(IPP = N / 3.5 = 319.2 \) gr

Demir içeriğini uzaklaştırınak amacı ile yapılan flotasyon deneylerinde bir laboratuvar ölçekteki flotasyon hücresi (Denver D12 model) kullanılmıştır. Deneysel koşullar Çizelge 3’de görtülmektedir.

Çizelge 3. Flotasyon deney koşulları.

<table>
<thead>
<tr>
<th>Flotasyon Aşamaları</th>
<th>Kondisyon Süresi (dakika)</th>
<th>Flotasyon Süresi (dakika)</th>
<th>AP801 Tüketimi (g/t)</th>
<th>AP825 Tüketimi (g/t)</th>
<th>pH (H(\text{2SO}_{4}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Flotasyon</td>
<td>3</td>
<td>2</td>
<td>300</td>
<td>500</td>
<td>2.5</td>
</tr>
<tr>
<td>2. Flotasyon</td>
<td>3</td>
<td>2</td>
<td>200</td>
<td>400</td>
<td>2.5</td>
</tr>
<tr>
<td>3. Flotasyon</td>
<td>2</td>
<td>1</td>
<td>100</td>
<td>300</td>
<td>2.5</td>
</tr>
</tbody>
</table>

3. BULGULAR VE TARTIŞMA

3.1. Yaş Öğütme Süresinin Belirlenmesi

İsıl işlem görmemiş -25 mm boyutundaki orijinal cevher numunesi farklı sürelerde yaş olarak öğütüldükten sonra elde edilen üründen elekt analizi yapılmıştır. Sonuçlar Çizelge 4’de görtülmektedir.
Çizelge 4. Öğütme süresinin tane boyut dağılımına etkisi

<table>
<thead>
<tr>
<th>Elek Boyutu (µm)</th>
<th>Orijinal %</th>
<th>15 %</th>
<th>30 %</th>
<th>45 %</th>
<th>60 %</th>
<th>75 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>+600</td>
<td>36.4</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-600 +500</td>
<td>1.8</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-500 +425</td>
<td>1.8</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-425 +300</td>
<td>8.6</td>
<td>3.8</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>-300 +106</td>
<td>35.7</td>
<td>62.3</td>
<td>57.6</td>
<td>50.5</td>
<td>42.9</td>
<td>41.9</td>
</tr>
<tr>
<td>-106 +75</td>
<td>7.0</td>
<td>14.0</td>
<td>24.5</td>
<td>22.5</td>
<td>23.0</td>
<td>24.3</td>
</tr>
<tr>
<td>-75</td>
<td>8.7</td>
<td>19.4</td>
<td>17.4</td>
<td>26.9</td>
<td>33.8</td>
<td>34.0</td>
</tr>
</tbody>
</table>

3.2. Islı İşlem ve Anı Soğutmanın Yaş Öğütmeye Etkisi

Islı işlem uygulanmış ve uygulanmamış numunelerin 30 dakikalık sürede çıktılımı sonuç elde edilen ürünlerdeki fraksiyonel boyut dağılımı Çizelge 5’de görülmektedir.

Çizelge 5. Islı işlemlerin, 30 dakika yaş öğütülen numunelerde boyut dağılımına etkisi.

<table>
<thead>
<tr>
<th>Islı İşlem Sıcaklığı</th>
<th>Fraksiyonel Ağırlık (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+500</td>
</tr>
<tr>
<td>25°C</td>
<td>0.0</td>
</tr>
<tr>
<td>100°C</td>
<td>0.0</td>
</tr>
<tr>
<td>200°C</td>
<td>0.0</td>
</tr>
<tr>
<td>300°C</td>
<td>0.0</td>
</tr>
<tr>
<td>400°C</td>
<td>0.0</td>
</tr>
<tr>
<td>500°C</td>
<td>0.0</td>
</tr>
<tr>
<td>600°C</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Görüldüğü gibi, 400°C’da kadar olan sıcaklıklarda -106 mikron boyutlu fraksiyonun ağırlığından dikkate değer bir değişiklik gözlenmemiştir. Ancak 500 °C’den sonra çevherin öğütme karakteristiği değişmiştir. Islı işlem görmemiş örnekte (25°C) ağırlıkta % 41.9 olan -106 mikron boyutlu fraksiyon, islı işlem ve anı soğutma uygulanın örneklerde 500°C’ta % 48.7 ve 600°C’ta % 49.5’e yükselmiştir. Bu demektir ki, safsızlık taşıyan parçacıkların serbestleşme oranıında artış gözlenebilecektir.

241
3.3. Islı İşlemlerin Bond Öğütebilirlik İş İndeksi Etkisi

Islı işlem uygulanmasış, 500 ve 600 °C sıcaklıklarda 30 dakika islı işlem uygulandıktan sonra su ile ani soğutulmuş 4 mm boyutlu numunelerde standart koşullarda uygulanan öğütme sonrası islı işlemin öğütebilirliğe etkisi, iş indeksindeki değişimler baz alınarak değerlendirilmiştir. Çizelge 6’da Bond kapalı devre test bulguları görülmektedir. Şekil 1 ve Çizelge 7’den görüldüğü gibi islı işlem görmüş örnekler için öğütümüş ürünlerin % 80’i 85 mikronun altında. Çizelge 8’den görüldüğü gibi islı işlem uygulanmasış numunede 25.27 kwh/ton olan iş indeksi, 500 °C sıcaklıkta uygulanan islı işlem ve ani soğutma sonunda 17.08 kwh/ton değerine; 600 °C sıcaklık uygulandıktan sonra 14.37 kwh/ton seviyesine düşmüştür. Görülmektedir ki 600 °C’de 30 dakika islı işlem ile Bond iş indeksinde % 43 oranında bir azalma gözlenmiş.

<table>
<thead>
<tr>
<th>Numune</th>
<th>: -4 mm, kuvarsit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Yoğunluğu</td>
<td>: 1596 g/L.</td>
</tr>
<tr>
<td>700 cc Numune</td>
<td>: 1117.2 g</td>
</tr>
<tr>
<td>IPP</td>
<td>: 700 mL numune g/3.5 = 319.2 g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sıcaklık (°C)</th>
<th>Değirmen Devir Sayısı</th>
<th>Ürüninde -106 μm Miktarı (g)</th>
<th>Beslenende -106 μm Miktarı (g)</th>
<th>Net Ürün IPP (g)</th>
<th>Gbp (g/dev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 °C</td>
<td>273.5</td>
<td>B_{on} = 327.8</td>
<td>8.6</td>
<td>319.2</td>
<td>1.1673</td>
</tr>
<tr>
<td>500 °C</td>
<td>181.6</td>
<td>B_{on} = 327.7</td>
<td>8.5</td>
<td>319.2</td>
<td>1.7578</td>
</tr>
<tr>
<td>600 °C</td>
<td>147.0</td>
<td>B_{on} = 327.7</td>
<td>8.5</td>
<td>319.2</td>
<td>2.1710</td>
</tr>
</tbody>
</table>

Çizelge 7. Bond kapalı devre öğütme test ürünlerinde boyut dağılımları.

<table>
<thead>
<tr>
<th>Ürün Boyut (mikron)</th>
<th>Origjinal Örnek (25 °C)</th>
<th>500 °C’de Isitılmış Örnek</th>
<th>600 °C’de Isitılmış Örnek</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ağ. %</td>
<td>Küm. E.A. %</td>
<td>Ağ. %</td>
</tr>
<tr>
<td>+106</td>
<td>0.0</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>-106+75</td>
<td>47.4</td>
<td>100</td>
<td>36.6</td>
</tr>
<tr>
<td>-75+53</td>
<td>10.2</td>
<td>52.6</td>
<td>14.2</td>
</tr>
<tr>
<td>-53+45</td>
<td>12</td>
<td>42.4</td>
<td>2.3</td>
</tr>
<tr>
<td>-45+38</td>
<td>5.7</td>
<td>30.4</td>
<td>1.5</td>
</tr>
<tr>
<td>-38</td>
<td>24.7</td>
<td>24.7</td>
<td>45.4</td>
</tr>
</tbody>
</table>
Şekil 1. Orijinal, 500 ve 600 °C sıcaklıklarda ısıtılmış örneklerin Bond kapalı devre ögütülmesi sonucu elde edilen ürünlerin tane boyut dağılımları.

Çizelge 8. İstil işlem sıcaklığının Bond ögütülebilirlik iş indekslerine etkisi.

<table>
<thead>
<tr>
<th>Eşitlik 1 'deki Parametreler</th>
<th>Birim</th>
<th>İşl İşlem Sıcaklığı (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Orijinal (25)</td>
</tr>
<tr>
<td>PI</td>
<td>µm</td>
<td>106</td>
</tr>
<tr>
<td>Gbp</td>
<td>g/dev</td>
<td>1.1673</td>
</tr>
<tr>
<td>P</td>
<td>µm</td>
<td>90</td>
</tr>
<tr>
<td>F</td>
<td>µm</td>
<td>365</td>
</tr>
<tr>
<td>Wi</td>
<td>kWh/ton</td>
<td>25.27</td>
</tr>
</tbody>
</table>

Şekil 2. İstil işlem sıcaklığının Bond ögütülebilirlik iş indeksine etkisi
3.4. Isıl İşlemlerin Kuvarsit Flotasyonuna Etkisi.

Isıl işleme tabi tutulmuş -11 mm mikron boyutlu orijinal örnekte %14 Fe²⁺ varken, isıl işlem sonucu (600°C) Fe²⁺ ionlarının oranı %10.7'ye düşmüştür. Fe²⁺ ionları %23.31 oranında Fe³⁺ ionlarına dönüştüktür. Bu sonuç öncesi araştırmaların elde ettiği sonuçlarla teorik bazda uyum içindedir [3,4]. Öğütme öncesi isıl işlem uygulanmış örneklerin flotasyon konsantrasyon ürünlerinin kimyasal analizleri ve toplam Fe₂O₃ giderim verimleri Çizelge 9'da görülmektedir.

Çizelge 9. Öğütme öncesi isıl işlem uygulanmış örnekten (-11 mm) öğütme – sımflandırma işleminden elde edilen -500 +106 mikron boyutlu fraksiyon ile kazanılan konsantrinin Fe₂O₃ %'si ve Fe₂O₃ giderim verimi.

<table>
<thead>
<tr>
<th>Isıl İşlem (°C)</th>
<th>Fe₂O₃ (%)</th>
<th>Fe₂O₃ Giderim Verimi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orijinal Örnek (25 °C)</td>
<td>0.211</td>
<td>66.68</td>
</tr>
<tr>
<td>500</td>
<td>0.055</td>
<td>73.93</td>
</tr>
<tr>
<td>600</td>
<td>0.057</td>
<td>72.98</td>
</tr>
</tbody>
</table>

Çizelge 9'da, orijinal örnek için Fe₂O₃ giderim verimi % 66.68 iken, 500 °C'de ısıtıldığında verimin % 73.93'e yükseldiği görülmektedir. Elde edilen sonuçlardan, öğütme öncesi ısıtma işlemi sonucu elde edilen örneğin flotasyonu ile demirin uzaklaştırılması, ısıtma işleminin çok etken olmadığı görülmüştür.

3.5. Öğütme Sonrası Uygulanan Isıl İşlemlerin Flotasyona Etkisi

Çizelge 10. -500 mikron boyutuna kuru öğütme sonrası isıl işlem uygulanmış numunelerde flotasyon konsantrasyon Fe₂O₃ %'leri ve Fe₂O₃ giderim verimleri (Istıma stresi 30 dakika).

<table>
<thead>
<tr>
<th>Isıl İşlem (°C)</th>
<th>Fe₂O₃ (%)</th>
<th>Fe₂O₃ Atma Verimi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orijinal Örnek (25 °C)</td>
<td>0.211</td>
<td>66.82</td>
</tr>
<tr>
<td>500</td>
<td>0.41</td>
<td>80.57</td>
</tr>
<tr>
<td>600</td>
<td>0.038</td>
<td>81.99</td>
</tr>
</tbody>
</table>

Çizelge 10'dan görüldüğü gibi, kuru öğütme sonrası elde edilen ürünlerin isıl işlemi ile hazırlanmış örneğin flotasyonu sonucu sırasında 500°C 'de % 80.57 ve 600°C'de % 81.99 Fe₂O₃ atma verimlerine ulaşmıştır. Buradan, sıcaklık artışı ile açık yüzeylerdeki demir içeriğindeki Fe²⁺/Fe³⁺ dönüşümünün kapanılmadaki demir içeriğinden daha etken olduğu sonucuna varılmıştır.

4. SONUÇLAR

I. Orijinal örneğin 600°C sıcaklığı 30 dakika uygulanan isıl işlem ile ürünü %7.6 artmıştır (Çizelge 5).

II. Belirtilen koşullarda -4 mm boylulu örneğe uygulanan Bond öğütülebilirlik testlerinde, isıl işlem ve ani soğutma ile iş indeksi 25.3 kwh/ton'dan 500°C sonunda 17.1 kwh/ton'a, 600°C sonunda ise 14.4 kwh/ton'a düşmüştür (Şekil 2; Çizelge 8).
III. Öğütme öncesi ısıt işleminin, cevherdeki Fe₂O₃ içeriğinin uzaklaştırılmasını çok etken olmadığı gözlenmiştir.
IV. Öğütme sonrası ısıt ile cevherin Fe₂O₃ içeriği %0.211’den %0.038’e düşürülebilmiştir (Çizelge 10).

5. KAYNAKLAR