DESİSİF BİR İKLİMLendirme SİstemİNİN EKSERİ ANALİZİ

Ertaç HÜRDÖĞAN, Orhan BÜYÜKALACA, Tuncay YILMAZ
Ç.Ü., Makine Mühendisliği Bölümü, Adana/Türkiye

Arif HEPBAŞLI
E. Ü., Makine Mühendisliği Bölümü, İzmir/Türkiye

ÖZET : Bu çalışmada, son yıllarda kullanımı yaygınlaşmaya başlayan ve konvansiyonel ıklımlendirme sistemlerine göre bazı avantajlara sahip olan desisif bir ıklımlendirme sistemi ele alınmıştır. Tüm sistemin ve sisteme bulunan önemli bileşenlerin performansı ekserji analizi yöntemi kullanarak değerlendirilmiştir. Performans değerlendirilmesinde, ekserji verimlilikleri, özgül ekserji indekleri, ekserjetik iyileştirme potansiyeli gibi bazı termodinamik parametreler kullanılmıştır.

Anahtar Kelimeler: İklımlendirme, nem almali soğutma, ekserji analizi

EXERGY ANALYSIS OF DESICCANT BASED AIR CONDITIONING SYSTEM

ABSTRACT : In this study, a desiccant based air-conditioning system that is viable alternative to vapor compression systems is considered. The performance of the system and its components are evaluated by using exergy analysis. Some thermodynamic parameters like exergy efficiencies, specific exergy, exergetic improvement potential and are used in the performance evaluation.

Keywords: Air conditioning, desiccant cooling, exergy analysis
1. GİRİŞ

Desisif (Nem almıyor) iklimlendirme sistemleri son yıllarda Avrupa'da ve ABD'de yaygınlaşmaya başlamasına rağmen, Türkiye'de tam olarak bilinmemekte ve çok fazla uygulamaya bulunmamaktadır. Bu sistemlerde, iklimlendirilecek mahalle gönderilen hava, nem alıcı (kurutucu) madde (katı veya sıvı) üzerinden geçirilmiş nemi dışarıılmekte ve daha sonra istenen konfor sıcaklığına kadar boynuzlamalı ısıtma veya konvansiyonel buhar ısıtılmalı ısıtma çevrimi tarafından ısıtılmaktadır. Nem alıcı üzerinden nem ise rejenerasyon havası olarak bilinen ikincil bir sıcak hava akımı tarafından uzaklaştırılmaktadır.

İklimlendirme sistemlerinde uygulanan değişik nem alma sistemleri Mazzei ve diğer tarafından derlenmiş ve bir tiyatroy salonu ile bir süper market için yapılan analizler neticesinde, desisif sistemlerin işletme maliyetlerinde büyük tasarruflar ve daha iyi nem kontrolü sağladığı, ancak ilk yatırım maliyetlerinde artışların olduğu belirtilmiştir [1]. Dai ve diğer, konvansiyonel buhar ısıtılmalı ısıtma sisteminin nem alma ve boynuzlamalı ısıtma sistemlerinin ilave edilmesi durumunda, ısıtma kapasitesinde %20-30 artış sağlanabilir ve sistemin COP'sinin ciddi oranda artışını bildirmişlerdir [2]. Subramanayam ve diğer, düşük nem gerekimi olan uygulamalar için desisif ısıtmayı deneyel olarak incelemiş ve bu tür uygulamalarda desisif sistemin performansının artışa katkalığı bir yanid-katkalı (re-heat) sistemlere göre daha iyi olduğunu bulmuşturlar [3]. La ve diğer, nem almadan dönör rotorumun kullanıldığı farklı iklimlendirme sistemlerini ve baza uygulamalarını içeren bir derleme çalışması yaparak bu tür sistemlerin uygulanışı goûtlenmiştir [4].

a) Enerji kaynaklarını kullanmanın çevreye olan etkilerinin en iyi şekilde belirlenmesinde ana bir araçtır.

b) Enerji sistemlerinin tasarım ve analizi için termodinamiğin ikinci yasasıyla birlikte kitle ve enerjinin korunumu prensiplerini kullanılarak etkin bir yöntemdir.

c) Daha fazla verimli kaynak kullanılmaktan amortiye uygun bir tekniktir. Belirlenmesi gereken atık ve kayıpların yerleri, tipleri ve gerçek büyütüklikleri ortaya çıkarabilir.

d) Mevcut sistemlerdeki verimsizlikleri azaltarak, daha verimli enerji sistemlerini tasarlamannın nasıl mümkün olup olamayacağının gösteren etkin bir tekniktir.

e) Sürdürülebilir gelişmenin elde edilmesinde anahtar bir bileşendir.

f) Enerji politikalarının oluşturulmasında kullanılabilecek önemli bir araçtır.

2. SİSTEMİN TANITIMI

Temiz hava kanalına 1 noktasında alınan havanın nemi, nem alma ünitesinde (döner tip) dışarıdırılktık (1→2) ve kuru ancak daha yüksek sıcaklıkta bir hava elde edilmekte (2). Aynı anda bir miktar sıcak hava (rejenerasyon havası) ters yönden nem alcısı gönderilerek (14) taze havadan çekilen nem, nem alma ünitesinden uzaklaştırılmaktadır (14→15). Nem alma ünitesinden sonra, temiz hava 1 ve 2 numaralı ısı değiştiricisinden geçirilerek (2→4), ön soğutma işlemine tabi tutulmakta ve sıcaklığı dışarıdırılktık. Temiz havanın sıcaklığı, son olarak buhar akıştırılmalı bir soğutma grubu tarafından soğutulan su yardımıyla kuru soğutucu serpantinde (3 numaralı ısı değiştirici) Titanium sıcaklığı kadar dışarıdırılktık. Burada temiz havanın içerisindeki su buharının yoğunlSFMLması için sisteme gerekli otomatik kontrol elemanları ve sensörler yerleştirilmiştir. Tasarlanan bu sistemde mahale gönderilen temiz havadan nem alma işlemi sadece döner nem alıcıda gerçekleşmektedir, diğer hiçbir bir ünitede (3 numaralı serpantine dahil) nem alma işlemi gerçekleşmemektedir.

İklimlendirilen mahalde (7) atık hava kanalına emilen hava, soğuq geri kazanımı amacıyla kullanılan 2 numaralı ısı değiştiricisine gelmeden önce, bir nemlendirme ünitesinde nemlendirilerek sıcaklığı dışarıdırılktık ve 2 numaralı ısı değiştiricisi üzerinden geçirilerek dışarı atılmaktadır.

Rejenerasyon kanalına 11 noktasında emilen dış hava, 1 ve 4 numaralı ısı değiştiricilerinden geçirilerek ön ısıtma işlemine tabi tutulmakta ve daha sonra, nem alma ünitesindeki nem uzaklaştırınç için gerekli olan sıcaklığı (rejenerasyon sıcaklığı) kadar elektrikli ısıtıcılar kullanılarak sürdürülme (13→14). 14 noktasında nem alma ünitesine giren rejenerasyon havası, nem alıcıdaki nemi içine alarak soğumaktadır (15) ve 4 numaralı ısı değiştiricisinden geçirilerek (15→16) dışarı atılmaktadır (17).
3. MODELENME VE ANALİZ
İklimlenme sistemlerinde, ısı girdileri, ekserji tahribi oranı, enerji ve ekserji verimleri; kütle, enerji ve ekserji denge bağıntıları kullanılarak belirlenmektedir. Aşağıda, öncelikle genel bağıntılar, daha sonra sistemin performansının değerlendirilmesine yönelik bağıntılar verilecektir.

Süreklı-akışlı açık sistemler için, kütle, enerji ve ekserji denge bağıntıları aşağıdaki gibi yazılabilir [12-14]:

Birim zaman bazında kütle (kütlesevi debi) dengesi:

\[\sum \dot{m}_g = \sum \dot{m}_v \] \hspace{1cm} (1)

Birim zamanda enerji dengesi (enerji akımı dengesi):

\[\dot{E}_g = \dot{E}_v \] \hspace{1cm} (2)

Birim zamanda ekserji dengesi (ekserji akımı dengesi):
\[\hat{E}x_2 - \hat{E}x_3 = \hat{E}x_{tahrib} \]
veYA
\[\hat{E}x_m - \hat{E}x_1 + \hat{E}x_{kwh-c-z} - \hat{E}x_{kwh-c} = \hat{E}x_{tahrib} \]
\[\Sigma \left(I - \frac{T_0}{T_k} \right) Q_k - \dot{W} + \Sigma \hat{m}_g \psi_g - \Sigma \hat{m}_c \psi_c = \hat{E}x_{tahrib} \]

şeklindedir. Bu eşitliklerde \(E_{\text{st}} \) in m; kütleye debisini (kg/s), \(\acute{E} \); enerji akımını (kW), \(\hat{E}x \); ekserji akımını (kW), alt indis "g" ve "c" sırasıyla girişi ve çıkışı, alt indis "o" ise oltu hali ifade etmektedir. Ayrıca Eşitlik 5'te, \(k \) yerinde \(T_k \) sıcaklığında sistem sınırından olan \(Q_k \); ısı transfer akımını (kW), \(\dot{W} \); güç (kW) ve \(\psi \); fiziksel ekserjiyi (kJ/kg) göstermektedir.

Ekserji akımı (birim zamandaki akış ekserjisi, kW), aşağıdaki bağnttdan elde edilebilir:

\[\hat{E}x = \hat{m} \psi \]
(6)

Fiziksel ekserji su ve soğutucu akışkan için:

\[\psi_{su,sn} = (h - h_0) - T_0 (s - s_n) \]
(7)

hava için ise,

\[\psi_h = (C_{p,h} + \omega C_{p,g}) T_0 [(T / T_0) - 1 \cdot \ln({T / T_0})] + (1 + 1.6078 \omega) R_h T_0 \ln(P / P_h) \]
\[+ R_h T_0 [(1 + 1.6078 \omega) \ln([1 + 1.6078 \omega_h] / [1 + 1.6078 \omega])] + 1.6078 \omega \ln(\omega / \omega_h) \]
(8)

şeklinde ifade edilmektedir. Fiziksel ekserji için verilen eşitliklerde \(h \); entalpiyi (kJ/kg), \(T \); sıcaklığı (°C), \(s \); entropiyi (kJ/kg K), \(C_{p,h} \) ve \(C_{p,g} \); sırasıyla hava ve su buharının sabit basınçtaki özgül ısısını (kJ/kg K), \(\omega \); özgül nem oranını (kg/kg suvada), \(R_h \); gaz sabitini (kJ/kg K), alt indis "o" ise oltu hali ifade etmektedir. Burada, özgül nem oranı, su buharının havanın kütleye debisine oran olarak aşağıdaki şekilde verilebilir.

\[\omega = \hat{m}_w / \hat{m}_h \]
(9)

Ekserji verimi (\(\varepsilon \)), istenilen etkinin ekserjisinin kullanlan ekserjiye oranı yada kazancın (ürunün) ekserjişinin (\(\hat{E}x_m \)), yaktın ekserjişine (\(\hat{E}x_{yak} \) orani olarak aşağıdaki şekilde ifade edilmektedir.

\[\varepsilon = \frac{\hat{E}x_{yak}}{\hat{E}x_{yak}} \]
(10a)
veYA
İş değiştiricileri için ekserji verimi, soğuk akışkanlıki ekserji artışının \((\dot{E}_\text{soguk} - \dot{E}_\text{soğuk})\) sıcak akışkanlıki ekserji düşüşüne \((\dot{E}_\text{sıcak} - \dot{E}_\text{sıcak})\) oran olarak aşağıdaki şekilde ifade edilmektedir.

\[
\varepsilon_{\text{IP}} = \frac{\dot{E}_\text{soguk} - \dot{E}_\text{soğuk}}{\dot{E}_\text{sıcak} - \dot{E}_\text{sıcak}} = \frac{\dot{m}_\text{soguk} (\psi_{\text{soguk}} - \psi_{\text{soğuk}})}{\dot{m}_\text{sıcak} (\psi_{\text{sıcak}} - \psi_{\text{sıcak}})}
\]

Van Gool's ekserjetik iyileştirme potansiyel akımı \((\dot{IP})\) aşağıdaki şekilde bulunabilir [15].

\[
\dot{IP} = (1 - \varepsilon)(\dot{E}_\text{g} - \dot{E}_\text{g})
\]

Rölatif tersinmezklik \((RT)\) ise:

\[
RT = \frac{\dot{E}_\text{tahrib,i}}{\dot{E}_\text{tahrib,toplum}}
\]

şeklinde tanımlanmaktadır. Bu eşitlikte “ı” i'nci bileşeni ifade etmektedir.

Ekserji analizleri için sistem üç farklı kısma ayrılmıştır. Bu kısımlar; (i) iklimlendirme sistemi (hava kısımı), (ii) soğutucu akışkan kısımı ve (iii) iklimlendirdikten mahal. Bu çalışmada, soğutucu akışkan kısımı değerlendirilmemiştir.

Kütle, enerji ve ekserji tahribinin belirlendiği ekserji denge denklemleri Şekil 1'de görtülen sistemin her ekipmanına uygulanmış ve aşağıda verilmiştir. Eşitliklerde alt indis olarak verilen numaralar, Şekil 1'deki numaraların ifade etmektedir.

Nem Altı Rotor (I):

\[
\dot{m}_1 = \dot{m}_2 = \dot{m}_\text{kotro hava (I)}; \quad \dot{m}_{14} = \dot{m}_{15} = \dot{m}_\text{ajırcı yapışkan hava (I)}
\]

\[
\dot{Q}_\text{termal, rotor (I)} = \dot{m}_t (h_2 - h_1); \quad \dot{Q}_\text{soğuk} = \dot{m}_t (h_{14} - h_{15})
\]

\[
\dot{E}_\text{tahrib, I} = \dot{m}_1 (\psi_1 - \psi_2) + \dot{m}_r (\psi_{14} - \psi_{15}) + \dot{W}_\text{tahrib}
\]

İş Değişiricisi 1 (II):

\[
\dot{m}_2 = \dot{m}_3 = \dot{m}_4; \quad \dot{m}_{11} = \dot{m}_{12} = \dot{m}_r
\]

\[
\dot{Q}_\text{degisirici merkezli (ID1)} = \dot{m}_t (h_2 - h_3); \quad \dot{Q}_{\text{ID1}} = \dot{m}_t (h_{12} - h_1)
\]

\[
\dot{E}_\text{tahrib, ID1} = \dot{m}_1 (\psi_2 - \psi_3) + \dot{m}_r (\psi_{11} - \psi_{12})
\]
İsı Değiştiricisi 2 (III):

\[
\dot{m}_3 = \dot{m}_4 = \dot{m}_5 \quad ; \quad \dot{m}_9 = \dot{m}_{10} = \dot{m}_{\text{atık haya}} \\
Q_{ID2} = \dot{m}_4(h_3 - h_4) \quad ; \quad \dot{Q}_{ID2} = \dot{m}_9(h_{10} - h_9) \\
Ex_{\text{atık.haya.ID2}} = \dot{m}_5(\psi_5 - \psi_4) + \dot{m}_9(\psi_9 - \psi_{10})
\]

(16a) (16b) (16c)

İsı Değiştiricisi 3 (IV):

\[
\dot{m}_4 = \dot{m}_5 = \dot{m}_6 \quad ; \quad \dot{m}_{18} = \dot{m}_{19} = \dot{m}_{\text{su}} \\
\dot{Q}_{ID3} = \dot{m}_4(h_4 - h_5) \quad ; \quad \dot{Q}_{ID3} = \dot{m}_{\text{su}}c_{w,p}(T_20 - T_19) \\
Ex_{\text{atık.haya.ID3}} = \dot{m}_5(\psi_5 - \psi_4) + \dot{m}_{\text{su}}(\psi_{19} - \psi_{30})
\]

(17a) (17b) (17c)

Taze Hava Fanti (V):

\[
\dot{m}_5 = \dot{m}_6 = \dot{m}_1 \\
\dot{W}_{\text{fan,t}} = \dot{m}_1(h_5 - h_6) \\
Ex_{\text{atık.fan,t}} = \dot{m}_1(\psi_5 - \psi_6) + \dot{W}_{\text{fan,t}}
\]

(18a) (18b) (18c)

Atık Hava Fanti (VI):

\[
\dot{m}_8 = \dot{m}_9 = \dot{m}_3 \\
\dot{W}_{\text{fan,a}} = \dot{m}_3(h_8 - h_9) \\
Ex_{\text{atık.fan,a}} = \dot{m}_3(\psi_7 - \psi_8) + \dot{W}_{\text{fan,a}}
\]

(19a) (19b) (19c)

Nemlendirici (VII):

\[
\dot{m}_g = \dot{m}_9 = \dot{m}_9 \\
\dot{m}_s h_8 + \dot{m}_{\text{su,nemlendirici, rem.a}} h_{\text{su,rem.a}} = \dot{m}_9 h_9 \\
Ex_{\text{atık.neml.a}} = \dot{m}_9(\psi_8 - \psi_9) + \dot{m}_{\text{su,rem.a}}(\psi_{\text{su,rem.a}})
\]

(20a) (20b) (20c)

İsı Değiştiricisi 4 (VIII):

\[
\dot{m}_{12} = \dot{m}_{13} = \dot{m}_{15} = \dot{m}_{16} = \dot{m}_r \\
\dot{Q}_{ID4} = \dot{m}_r(h_{13} - h_{12}) \quad \dot{Q}_{ID4} = \dot{m}_r(h_{15} - h_{16}) \\
Ex_{\text{atık.haya.ID4}} = \dot{m}_r(\psi_{12} - \psi_{13}) + \dot{m}_r(\psi_{15} - \psi_{16}) + \dot{W}_{ID4}
\]

(21a) (21b) (21c)
Elektrikli İşitici Ünitesi (IX):

\[
\dot{m}_{13} = \dot{m}_{14} = \dot{m}_r \tag{22a}
\]
\[
\dot{W}_{\text{Elektrik İşitici(EI)}} = \dot{m}_r (h_{14} - h_{13}) \tag{22b}
\]
\[
\dot{E}_{\text{tahrip, EI}} = \dot{m}_r (\psi_{13} - \psi_{14}) + \dot{W}_{\text{EI}} \tag{22c}
\]

Rejenerasyon Hava Fanı (X):

\[
\dot{m}_{16} = \dot{m}_{17} = \dot{m}_r \tag{23a}
\]
\[
\dot{W}_{\text{fem,r}} = \dot{m}_r (h_{17} - h_{16}) \tag{23b}
\]
\[
\dot{E}_{\text{tahrip,fan,r}} = \dot{m}_r (\psi_{16} - \psi_{17}) + \dot{W}_{\text{fem,r}} \tag{23c}
\]

Su pompası (XI):

\[
\dot{m}_{18} = \dot{m}_{19} = \dot{m}_s \tag{24a}
\]
\[
\dot{W}_{\text{pompa}} = \dot{m}_s (h_{19} - h_{18}) \tag{24b}
\]
\[
\dot{E}_{\text{tahrip,pompa}} = \dot{m}_s (\psi_{18} - \psi_{19}) + \dot{W}_{\text{pompa}} \tag{24c}
\]

Tüm sistemin ve her bir ekipman için ekserji verimleri aşağıda verilmiştir:

Tüm Sistem (I-XVII):

\[
\varepsilon_{\text{sistem}} = \frac{\Sigma \dot{E}_{X}}{\Sigma \dot{E}_{X-g}} \tag{25}
\]

Nem Alıcı Rotor (I):

\[
\varepsilon_{\text{na}} = \frac{\dot{E}_{\text{x}_{3}} + \dot{E}_{\text{x}_{13}}}{\dot{E}_{\text{x}_{1}} + \dot{E}_{\text{x}_{14}} + \dot{W}_{\text{na}}} \tag{26}
\]

İş Değiştiricisi 1 (II):

\[
\varepsilon_{\text{ID}_{1}} = \frac{\dot{E}_{\text{x}_{3}} + \dot{E}_{\text{x}_{12}}}{\dot{E}_{\text{x}_{2}} + \dot{E}_{\text{x}_{11}}} \tag{27}
\]

İş Değiştiricisi 2 (III):

\[
\varepsilon_{\text{ID}_{2}} = \frac{\dot{E}_{\text{x}_{4}} + \dot{E}_{\text{x}_{10}}}{\dot{E}_{\text{x}_{5}} + \dot{E}_{\text{x}_{9}}} \tag{28}
\]
İş Değişicisi 3 (IV):

\[e_{103} = \frac{E\dot{x}_5 + E\dot{x}_{20}}{E\dot{x}_4 + E\dot{x}_{19}} \]
(29)

Taze Hava Fanı (V):

\[e_{fan,t} = \frac{E\dot{x}_6 - E\dot{x}_4}{W_{fan,t}} \]
(30)

Atık Hava Fanı (VI):

\[e_{fan,n} = \frac{E\dot{x}_8 - E\dot{x}_2}{W_{fan,n}} \]
(31)

Nemlendirici (VII):

\[e_{ann} = \frac{E\dot{x}_9}{E\dot{x}_8 + E\dot{x}_{14,ann}} \]
(32)

İş Değişicisi 4 (VIII):

\[e_{104} = \frac{E\dot{x}_{12} + E\dot{x}_{16}}{E\dot{x}_{15} + E\dot{x}_{12} + W_{104}} \]
(33)

Elektrikli Isitici Ünitesi (IX):

\[e_{El} = \frac{E\dot{x}_{14} - E\dot{x}_{13}}{W_{eh}} \]
(34)

Rejenerasyon Hava Fanı (X):

\[e_{fan,r} = \frac{E\dot{x}_{17} - E\dot{x}_{16}}{W_{fan,r}} \]
(35)

Su Pompası (XI):

\[e_{pompa} = \frac{E\dot{x}_{19} - E\dot{x}_{18}}{W_{pompa}} \]
(36)
4. BULGULAR VE TARTIŞMA

Bölüm 3‘te ayrıntılı bir şekilde açıklanan ekseri analizleri, 120°C rejenerasyon sıcaklığında yapılan örnek bir deneye uygulanmış ve sonuçlar aşağıda verilmiştir. 15 Ağustos 2008 tarihinde 08:00 ile 19:00 saatleri arasında (yaklaşık 40000 sanîye) gerçekleştirilen bu deneyde, oda sıcaklığı ve rölatif nemi, ASHRAE tarafından verilen konfor bölgesi sınırlarına uygundur, sırasıyla 26°C ve %50 ye ayarlanmıştır. Sistemde bulunan her üç hava kanalındaki debiler, eğit ve 4000 m³/saat olarak şekilde ayarlanmıştır. Ekseri analizlerinden elde edilen sonuçlar, sistemdeki tersinmezlikler ve potansiyel iyileştirme olmak üzere iki ana grupta değerlendirilmiştir. Bu çalışmada, öül hali sıcaklığı 15°C, basınç ise 101.325 kPa olarak alınmıştır. Hava için kullanılan öül hali mutlak nemi ise günlük ortalaması dış hava mutlak nemi olarak alınmıştır.

120°C rejenerasyon sıcaklığında yapılan deneyin 23400. sanîyesinde, hava ve su için ölçülên ve hesaplanan sıcaklık, mutlak nem, kütle debisi, entalpi, ekserji akımı, ekserji verimi v.b. değerleri, Şekil 1‘de numaralara uygun olarak tablolardan halinde verilmiştir (Tablo 1-2). Tablo 1‘de verilen sonuçlar, elektrikli istıtcı ünitesine en fazla iş verilmesi nedeniyle, ekserji akımının diğer sistemi oluşturan elemanlara kryasa tersinmezlikler sebebi ile daha fazla olduğu yönlendirilir. Tablo 2‘de ise, sistem ve sistemden tüm ekipmanlar için, ekserjetik ürûn-yaktı akımlarını (giren-çikan ekserji), ekserji tahribi, ekserji verimi, iyileştirme potansiyeli ve rölatif tersinmezlik gibi parametreler verilmiştir. Tablodan, sistemın ekserji veriminin çikan/giren esasına göre % 38.67 olduğu görülmektedir. Sistemi oluşturan ekipmanlar arasında en yüksek ekserji veriminin (%97.99) 4 numaralı ısı değiştiricisinde olduğunu yine bu tablodan görülmektedir. Tablo 2‘den ayrıca, sistemde en yüksek ekserji tahribi ve iyileştirme potansiyeli akımı ile rölatif tersinmezliğin elektrikli istıtcı ünitesinde olduğu görülmektedir. Tüm ısı değiştiricileri arasında en yüksek rölatif tersinmezlik ise 1 numaralı ısı değiştiricisinde (%60.89) meydana gelmektedir.

5. SONUÇ

Bu çalışmada, son yıllarda kullanımı yaygınlaşmaya başlayan ve konvansiyonel iklimlendirme sistemlerine göre bazı avantajlara sahip olan desisif bir iklimlendirme sistemi ele alınmıştır. Tüm sistem ve sistemde bulunan önemli bileşenlerin performansı ekserji analizi yöntemi kullanarak değerlendirilmiştir. Tasarlanıp kurulan nem almak iklimlendirme sisteminin ekserji analizleri gerçekleştirilen örnek bir deney için yapılmıştır. Yapılan analizlerden, sistemde ekserji tahibi akımı ve rölatif tersinmezliği en yüksek ekipmanın elektrikli istıtcı ünitesi olduğunu ayrıca sistemde kullanılan ısı değiştiricilerinin ekserji verimlerinin %71-98 arasında değiştiği, tüm sistem ekserji veriminin ise yaklaşık %40 olduğu görülmüştür.
Tablo 1. Elde edilen ekseri analizi sonuçları

<table>
<thead>
<tr>
<th>No</th>
<th>Açıklama</th>
<th>Akışkan</th>
<th>Fez</th>
<th>$\Delta T (^\circ C)$</th>
<th>ΔP (Pa)</th>
<th>Mutfak nem W (kg su/kg hava)</th>
<th>Ozgül Entalpi k (kJ/kg)</th>
<th>Ozgül Entropisi (kJ/kr)</th>
<th>Kültesel debi m (kg/s)</th>
<th>Ozgül ekseri ψ (kJ/kg)</th>
<th>Eksersi alımı $\Delta X (JW)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>Nemli hava</td>
<td>Su</td>
<td>15</td>
<td>101.325</td>
<td>0.0166</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0'</td>
<td>-</td>
<td>Ofis hali</td>
<td>Ofis</td>
<td>15</td>
<td>101.325</td>
<td>-</td>
<td>63</td>
<td>0.234</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>Nem alma giriş (Doğ hava)</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>33.71</td>
<td>101.325</td>
<td>0.0164</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>0.57</td>
<td>0.701</td>
</tr>
<tr>
<td>2</td>
<td>Nem alma giriş / İst. değişi. 1 giriş</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>55.58</td>
<td>101.325</td>
<td>0.0105</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>2.947</td>
<td>3.502</td>
</tr>
<tr>
<td>3</td>
<td>İst. değişi. 2 giriş / İst. değişi. 1 giriş</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>40</td>
<td>101.325</td>
<td>0.0105</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>1.219</td>
<td>1.499</td>
</tr>
<tr>
<td>4</td>
<td>İst. değişi. 3 giriş / İst. değişi. 2 giriş</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>26.97</td>
<td>101.325</td>
<td>0.0105</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>0.416</td>
<td>0.511</td>
</tr>
<tr>
<td>5</td>
<td>İst. değişi. 4 giriş / Taze hava fısı fısı giriş</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>21.06</td>
<td>101.325</td>
<td>0.0105</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>0.232</td>
<td>0.286</td>
</tr>
<tr>
<td>6</td>
<td>Taze hava fısı fısı / Mahal giriş</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>23.12</td>
<td>101.325</td>
<td>0.0105</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>0.283</td>
<td>0.348</td>
</tr>
<tr>
<td>7</td>
<td>Mahal giriş / Atak hava fısı fısı giriş</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>26.13</td>
<td>101.325</td>
<td>0.0108</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>0.365</td>
<td>0.449</td>
</tr>
<tr>
<td>8</td>
<td>Atak hava fısı fısı / Nemlendirci giriş</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>27.07</td>
<td>101.325</td>
<td>0.0108</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>0.493</td>
<td>0.495</td>
</tr>
<tr>
<td>9</td>
<td>Nemlendirci giriş / İst. değişi. 1 giriş</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>20.38</td>
<td>101.325</td>
<td>0.014</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>0.079</td>
<td>0.097</td>
</tr>
<tr>
<td>10</td>
<td>İst. değişi. 2 Giriş</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>51.76</td>
<td>101.325</td>
<td>0.014</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>0.512</td>
<td>0.63</td>
</tr>
<tr>
<td>11</td>
<td>İst. değişi. 3 giriş (Doğ hava)</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>33.17</td>
<td>101.325</td>
<td>0.0164</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>0.57</td>
<td>0.701</td>
</tr>
<tr>
<td>12</td>
<td>İst. değişi. 4 giriş / İst. değişi. 3 giriş</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>44.1</td>
<td>101.325</td>
<td>0.0164</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>1.455</td>
<td>1.79</td>
</tr>
<tr>
<td>13</td>
<td>İst. değiş. 4 giriş / Elk. irisi irisi giriş</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>52</td>
<td>101.325</td>
<td>0.0164</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>2.268</td>
<td>2.79</td>
</tr>
<tr>
<td>14</td>
<td>Elk. irisi irisi / Nemaltı giriş</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>57.71</td>
<td>101.325</td>
<td>0.0164</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>8.155</td>
<td>10.031</td>
</tr>
<tr>
<td>15</td>
<td>Nem altı giriş / İst. değişi. 4 giriş</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>52.15</td>
<td>101.325</td>
<td>0.0218</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>2.404</td>
<td>2.957</td>
</tr>
<tr>
<td>16</td>
<td>İst. değişi. 4 giriş / Çağ. Hava fısı fısı giriş</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>45.65</td>
<td>101.325</td>
<td>0.0218</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>1.688</td>
<td>2.077</td>
</tr>
<tr>
<td>17</td>
<td>Çağ. hava fısı fısı</td>
<td>Nemli hava</td>
<td>Gaz</td>
<td>47.35</td>
<td>101.325</td>
<td>0.0218</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>1.864</td>
<td>2.392</td>
</tr>
<tr>
<td>18</td>
<td>Pompal giriş</td>
<td>Su</td>
<td>Su</td>
<td>16.79</td>
<td>101.325</td>
<td>-</td>
<td>70.1</td>
<td>0.249</td>
<td>0.861</td>
<td>0.104</td>
<td>0.009</td>
</tr>
<tr>
<td>19</td>
<td>Pompal giriş / İst. değişi. 3 giriş</td>
<td>Su</td>
<td>Su</td>
<td>16.89</td>
<td>101.325</td>
<td>-</td>
<td>70.9</td>
<td>0.252</td>
<td>0.861</td>
<td>0.168</td>
<td>0.144</td>
</tr>
<tr>
<td>20</td>
<td>İst. değişi. 3 giriş / Su dışarıs giriş</td>
<td>Su</td>
<td>Su</td>
<td>19.42</td>
<td>101.325</td>
<td>-</td>
<td>81.5</td>
<td>0.288</td>
<td>0.861</td>
<td>0.058</td>
<td>0.05</td>
</tr>
<tr>
<td>No</td>
<td>Tanım</td>
<td>(P) (kW)</td>
<td>(P') (kW)</td>
<td>(E_\text{ek}) (kW)</td>
<td>(\varepsilon) (%)</td>
<td>(t'P)</td>
<td>Tümsizin Değişiricileri (%)</td>
<td>Tüm Sistem (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Isı değiştirici 1</td>
<td>3.289</td>
<td>4.203</td>
<td>0.914</td>
<td>78.55</td>
<td>0.199</td>
<td>60.89</td>
<td>2.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Isı değiştirici 2</td>
<td>1.141</td>
<td>1.596</td>
<td>0.455</td>
<td>71.49</td>
<td>0.13</td>
<td>30.32</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Isı değiştirici 3</td>
<td>0.336</td>
<td>0.366</td>
<td>0.03</td>
<td>91.84</td>
<td>0.002</td>
<td>2.08</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Taze havasız</td>
<td>0.062</td>
<td>2.986</td>
<td>2.924</td>
<td>2.076</td>
<td>2.004</td>
<td>-</td>
<td>7.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>Atık havası</td>
<td>0.046</td>
<td>2.156</td>
<td>2.069</td>
<td>2.17</td>
<td>2.025</td>
<td>-</td>
<td>5.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>Nemlendirici</td>
<td>0.097</td>
<td>0.604</td>
<td>0.507</td>
<td>16.07</td>
<td>0.425</td>
<td>-</td>
<td>1.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>Isı değiştirici 4</td>
<td>4.867</td>
<td>4.967</td>
<td>0.1</td>
<td>97.99</td>
<td>0.002</td>
<td>6.71</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>Elek. ısıta uniter</td>
<td>7.241</td>
<td>30.037</td>
<td>22.796</td>
<td>24.11</td>
<td>17.3</td>
<td>60.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Rj. havasız</td>
<td>0.215</td>
<td>3.083</td>
<td>2.857</td>
<td>6.97</td>
<td>2.688</td>
<td>-</td>
<td>7.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>Pompa</td>
<td>0.096</td>
<td>0.3</td>
<td>0.704</td>
<td>12.04</td>
<td>0.619</td>
<td>-</td>
<td>2.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-IV,VIII</td>
<td>Tüm</td>
<td>9.93</td>
<td>11.13</td>
<td>1.501</td>
<td>36.54</td>
<td>0.202</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-XVII</td>
<td>Tüm sistem</td>
<td>23.83</td>
<td>61.67</td>
<td>37.97</td>
<td>38.57</td>
<td>23.194</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. TEŞEKKÜR
Bu çalışma, TÜBİTAK tarafından "106M094" nolu proje kapsamında desteklenmiştir. Desteklerinden dolayı TÜBİTAK'a teşekkür ederiz.

7. KAYNAKLAR