Effect of Water Salinity on the Acute Toxicity of Mercuric Chloride on Rainbow Trout (*Oncorhynchus mykiss*, Walbaum 1792)

Evrim Sibel BEŞLİ¹, Bülent VEREP², Şenol AKIN³

¹Department of Fisheries, Tirebolu Mehmet Bayrak Vocational Schools, Giresun University, 28000, Giresun, Turkey, e-mail: evrim.sibel.besli@giresun.edu.tr
²Faculty of Fisheries, University of Recep Tayyip Erdoğan, 53100, Rize, Turkey, e-mail: bulent.verep@erdogan.edu.tr
³Department of Fisheries, Faculty of Agriculture, University of Gaziosmanpaşa, Tokat, Turkey, e-mail: senol.akin@gop.edu.tr.

Received/Geliş: 19.01.2016 Revised/Düzeltme: 02.02.2016 Accepted/Kabul: 07.02.2016

Abstract: The acute toxicity of mercuric chloride (HgCl₂), one of most toxic pollutants for aquatic ecosystems, in rainbow trout (*Oncorhynchus mykiss*) was investigated in the present study at three different salinities (<0.005‰, 7.5‰ and 17‰). The actual concentration ranged of HgCl₂ was ranged from 0.10 to 8.00 mg L⁻¹. The acute toxicity tests were performed by 96-h static tests in different water salinity conditions. The lethal concentrations of mercuric chloride for trout, at the end of the acute toxicity tests were evaluated by Finney’s Probit Analysis. Concentrations of HgCl₂ that killed 50% of the rainbow trout within 96 hours (96 h LC₅₀) were estimated as 0.808, 0.602, and 0.583 mg L⁻¹, for 0, 7.5, and 17 ppt (parts per thousand) of salinity, respectively. The sensitivity of trout to mercuric chloride was increased with increasing concentration of salinity.

Keywords: Water pollution, aquatic toxicology, fish, heavy metal, mercury.

Özet: Bu çalışmada sucul ekosistem için en toksik kirleticilerden biri olan civa-II-klorür (HgCl₂)’ün 3 farklı tuzlulukta Gökkuşağı alabalığı (*Oncorhynchus mykiss*) üzerindeki akut toksisitesi incelenmiştir. Deneme için uygulanan HgCl₂ konsantrasyonu 0.10 ile 8.00 mg L⁻¹ arasında değişim göstermiştir. Civa-II-klorür’ün alabalıklarla ilgili letal konsantrasyonları, akut toksisite testleri sonucunda Finney’in Probit Analiz’i ile değerlendirildi. Farklı tuz konsantrasyonları (<0.005‰, 7.5‰ and 17‰) için 96 saat içinde Gökkuşağı alabalıklarının 50’ini öldüren (96 h LC₅₀) HgCl₂ konsantrasyonları sırasıyla 0.808, 0.602, ve 0.583 mg L⁻¹ olarak bulundu. Gökkuşağı alabalığının HgCl₂ akut toksik duyarlılığının tuz konsantrasyonu artışı ile paralel olarak arttığı gözlenmiştir.

Anahtar kelimeler: Su kirliliği, aküatik toksikoloji, balık, ağır metal, civa

1. Introduction

Water pollution, which is caused by the heavy metals, is one of the most serious problems for aquatic environments and its biota. There are more than 40 metals and metal alloys in the industry.
today (Güley and Vural, 1987). Mercury (Hg) has great importance among harmful heavy metals (Sorensen, 1991). Mercuric chloride has been used in agriculture as a fungicide, in medicine as a topical antiseptic and disinfectant. Mercury-II chloride is commonly used both for industrial, scientific and agricultural purposes around the world as well as in Turkey (Başer et al., 2003; Svobodova et al., 2003).

Mercury is present mainly as inorganic mercury compounds or methyl mercury (CH₃Hg⁺) in aquatic media (Driscoll et al., 1994; Van et al., 1994). There are two different ways for biological accumulation of mercury in aquatic organisms. These are the result of direct (by the metal present in the water) or tropic exposures (by the metal in food) (Boudou and Ribeyre, 1983). Mercury is deposited predominantly accumulated in gills of fish and also a small extent in liver, muscles and mucus (Handy and Penrice, 1993). Mercury mainly attaches sulphydryl proteins in fish’s various tissues (Olson et al., 1978). In this way, mercury may cause death or retardation of growth of fish (Wiener and Spry 1996; Snarski and Olson, 1982; Klaverkamp et al., 1983; Perry et al., 1988).

Many research have been conducted to determine the toxicity of heavy metals in trouts, especially for mercury substances (Terzi and Verep, 2011; Gül et al., 2008; Verep et al., 2007; Beşli, 2006; Pardey et al., 2005). A little study has been conducted to determine the acute toxicity of HgCl₂ on seabass species at different salinities (Tongra-ar et al., 2003) but no study for rainbow trout.

This study was concerned with the determination of the acute LC₅₀ value of mercury-II-chloride upon Oncorhynchus mykiss individuals at three different salinities using acute bioassay tests. Rainbow trout was selected for bioassays because it can easily be obtained from local trout farms throughout the year, and its growth is excellent under laboratory conditions (Bernstein and Montgomery 2008; Molony, 2001; U.S.D.A, 2000).

2. Materials and Methods

Experimental Setup

Rainbow trouts (Oncorhynchus mykiss) were selected for the bioassay test study. The trouts were taken from a local trout breeding farm near laboratory and then transferred to the laboratory in Faculty of Fisheries, Rize University. The trouts were put in tanks filled with fresh water conditioned for 10 days to acclimate to the laboratory conditions prior to experiments. Throughout the acclimation period and subsequent periods of mercuric chloride exposure, fish were held under a photoperiod of 12-h light and dark cycle. During acclimation, fish were fed with commercial trout pellets twice a day at 5% of their body weight. The feeding was terminated 2 days before the bioexperiments and not fed during experiments and care was taken to keep the mortality rate below 5% during this period (APHA, AWWA and WPCF, 1971). No fish died during this period. After acclimatization, the fish were placed into the maintenance tanks. Each tank was stocked with 10 fish. Fish’s average weight was 27.40±1.00 g and average fork length was 13.20±0.20 cm. A Dikomsan DS-30 brand weighing machine, which has 1 mg precision, was used weighing to fish. A Calipper brand digital caliper, which has ±1 mm precision, was used for the measurement of fish’s total length. Although the fiberglass tanks (Armaplast brand, 1.10 x 1.10 x 0.42 m) had 500 L capacity, test tanks were failed with 250 L of conditioned tap water. The total fish number must be added by autors in this section

Water quality

Some characteristics of water in these tanks were showed Table 1. YSI-85 brand oxygen-meter was used to determine of these concentrations. Resun Aco-008 brand air pump was used to keep the
The toxic compound used in the bio-experiments was mercury-II-chloride (HgCl₂). Mercury-II-chloride was prepared to give the stock material by diluting in pure water. A Precisa brand electronic scale, which has 1 mg precision, was used to weigh the toxic substance. The dosing solutions were prepared from this stock. The dosing concentrations were 0.00, 0.28, 0.56, 0.84, 1.12, 1.40, 2.00, 4.00, and 8.00 mg L⁻¹. The effect of the compound was determined in a period of 96 hours (Henle, 1981). Behavioral changes were recorded in detail at 1 – 6 h and every 12 h during test period. Mortality was controlled and the dead fish were immediately removed from the tank during this period. The numbers of dead and surviving fish in each tank were recorded during this period. Mortality was regulated at 10±1°C by using heaters. Such as whether there is no statistically significant difference between doses for average temperatures (F=0.12; P=0.98), there was no statistical difference between the salinity concentrations, too (F=0.17; P=0.84). Dolphin Marine Salt used to provide salinity. Amount of salinity was measured before and after the participation with YSI-85 brand oxygen-meter, too.

Table 1: Physicochemical water quality of test water

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>10 ± 1</td>
</tr>
<tr>
<td>Dissolved oxygen (mg L⁻¹)</td>
<td>7.8 – 8.2</td>
</tr>
<tr>
<td>pH</td>
<td>7.3 – 7.5</td>
</tr>
<tr>
<td>Conductivity (µS cm⁻¹)</td>
<td>158 – 182</td>
</tr>
<tr>
<td>Total hardness (as mgCaCO₃/L)</td>
<td>61 – 65</td>
</tr>
<tr>
<td>Salinity (%o)</td>
<td>Freshwater, 7.5, 17.0</td>
</tr>
</tbody>
</table>

The calculated 96-h acute LC₅₀ value (95% confidence limits) of mercury-II-chloride, using a static bioassay system to fry rainbow trout (Oncorhynchus mykiss) were 0.808, 0.602, and 0.583 mg L⁻¹ for <0.005 (freshwater), 0.75, 17 ppt salinities, respectively. Results are in Table 2. Probit Analysis was used for this (Finney, 1971). The results show that mercury-II-chloride is very toxic to the fish in the doses of higher than 1 mgL⁻¹ HgCl₂ (Table 2, Figure 1).

Table 2: Acute 96-h toxicity of mercury-II-chloride on Oncorhynchus mykiss

<table>
<thead>
<tr>
<th>POINT (LC)</th>
<th><0.005 (freshwater)</th>
<th>7.5 (Saltwater 1)</th>
<th>17 (Saltwater 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (mg L⁻¹)</td>
<td>95% Confidence limits</td>
<td>Concentration (mg L⁻¹)</td>
</tr>
<tr>
<td>1.00</td>
<td>0.487</td>
<td>0.264-0.604</td>
<td>0.223</td>
</tr>
<tr>
<td>5.00</td>
<td>0.565</td>
<td>0.354-0.672</td>
<td>0.298</td>
</tr>
<tr>
<td>10.00</td>
<td>0.611</td>
<td>0.414-0.714</td>
<td>0.348</td>
</tr>
<tr>
<td>15.00</td>
<td>0.645</td>
<td>0.459-0.744</td>
<td>0.387</td>
</tr>
<tr>
<td>50.00</td>
<td>0.808</td>
<td>0.682-0.922</td>
<td>0.602</td>
</tr>
<tr>
<td>85.00</td>
<td>1.012</td>
<td>0.891-1.301</td>
<td>0.938</td>
</tr>
<tr>
<td>90.00</td>
<td>1.068</td>
<td>0.934-1.435</td>
<td>1.042</td>
</tr>
<tr>
<td>95.00</td>
<td>1.155</td>
<td>0.996-1.668</td>
<td>1.216</td>
</tr>
<tr>
<td>99.00</td>
<td>1.340</td>
<td>1.113-2.231</td>
<td>1.627</td>
</tr>
</tbody>
</table>
Fish Behavior

The behavioral changes of trouts were compared among control group and each exposed to various doses of HgCl$_2$. The control group showed normal behavior during the test period, and mortality was 0%. The changes in behavioral response started between 1 - 3 hours after dosing. The lowest concentration (0.28 mg L$^{-1}$) had similar behavior with the control group. From the dose of 0.56 mg L$^{-1}$, the fish started to show behavioral disorders such as excessive mucus secretion. From 0.84 mg L$^{-1}$ onwards, there were a loss of equilibrium, rapid gill movement, swimming at the water surface and gulping for air. At the concentrations of 1.12 mg L$^{-1}$, behavioral abnormalities of the fish reached maximum, such as, increased difficulty in respiration, besides the accumulation of air transport, accumulation in fish together, and motionless laying down on the tank bottom. At the same time, there was 100% mortality at 1.40, 2.00, 4.00, and 8.00 mg L$^{-1}$ concentrations within the first 30 min after dosing (Figure 1).

![Figure 1: Mortality values of rainbow trout due to mercury-II-chloride (HgCl$_2$) toxicity at the three different salinities (<0.005‰, 7.5‰ and 17‰)](image)

4. Discussion

The behavioral changes in fish are one of the most important indicators of contamination in aquatic environments (Richmonds and Dutta, 1992). The 96 h LC$_{50}$ value of mercury-II-chloride in fry trout was 0.808 mg L$^{-1}$ in the present study. In aquatic toxicology, if LC$_{50}$ (mg L$^{-1}$) concentration is smaller than 1 mg L$^{-1}$, the chemical is highly toxic and if between 1 – 10 mg L$^{-1}$, then it is considered to be a moderately toxic (Louis et al., 1996). Therefore, we report mercury-II-chloride to be highly toxic to fry rainbow trout and increasing in salt concentration increases the toxic effect. Duncan and Klaverkamp (1983) determined the LC$_{50}$ value of HgCl$_2$ upon *Catostomus commersoni* as 0.687 mg L$^{-1}$. The 96 h LC$_{50}$ values of inorganic mercury was reported as 0.002 mg L$^{-1}$ (30 days) for crayfish (*Oronectes limosus*), 0.005 mg L$^{-1}$ for cladoceran (*Daphia magna*), 0.010 mg L$^{-1}$ for scud (*Gammarus pseudolimnaeus*), 0.200 mg L$^{-1}$ for juvenile rainbow trout, 0.440 mg L$^{-1}$ for *Notopterus notopterus*, 0.007 mg L$^{-1}$ for leopard frog (*Rana pipiens*), 0.107 mg L$^{-1}$ for marbled salamander (*Ambystoma opacum*), 0.006 mg L$^{-1}$ for blue mussel (*Mytilus edulis*), 0.330 mg L$^{-1}$ for adult slipper limpet (*Crepidula fornicata*), 0.089 mg L$^{-1}$ for bay scallop (*Argopecten irradians*), 0.004 mg L$^{-1}$ for juvenile mysid shrimp (*Mysidopsis bohia*), 0.015 mg L$^{-1}$ for adult copepod...
(Acartia tonsa), 0.015 mg L\(^{-1}\) for prawn (Penaeus indicus), 0.014 mg L\(^{-1}\) for polychaete larva (Capitella capitata), 0.098 mg L\(^{-1}\) for haddock (Melanogrammus aeglefinus) (Eisler 1987). According to FAO/UNEP (1991), the 96h LC\(_{50}\) values for \(\text{HgCl}_2\) are 0.35, 0.22, 0.09, 0.08, and 2.00 mg L\(^{-1}\) for catfish, rainbow trout, striped bass, brook trout, and mummichog, respectively (FAO/UNEP, 1991). The LC\(_{50}\) value of mercury-II chloride in other aquatic organisms was reported as 0.037, 0.160, and 0.903 mg L\(^{-1}\) for fathead minnow, bluegill sunfish (size: 0.6 g), and rainbow trout, respectively (URL-1).

Finally, Wobeser (1975) found the 48-hour LC\(_{50}\) of mercury on rainbow trout (Oncorhynchus mykiss) at 10 °C as 280 μg L\(^{-1}\). Matida et al. (1971) also investigated the toxic effect of \(\text{HgCl}_2\) upon rainbow trout and found the 48-hr LC\(_{50}\) value as 0.21 mg L\(^{-1}\). Leblond and Hontela (1999) determined the same value as 199 μm. According to present study, trouts (Oncorhynchus mykiss) are less sensitive than the before-mentioned species, but increasing in salt concentration increases the toxic effect. Toxicity of metals is lower than in saline water compared to freshwater in most cases. But some authors suggested that the increase of metal toxicity in saline water may be linked to incomplete hypoosmoregulatory ability of the fish (Witeska and Jezierska, 2003). Tongra-ar et al. (2003) have been conducted to determine the acute toxicity of mercury on seabass species at different salinities. In this study, after 7-d exposure to various Hg concentrations and at four salinities (2, 10, 20 and 30 psu), salinity did not have any significant effects on the toxicity of Hg on survival and growth of seabass larvae. One possible explanation is that Hg preferentially forms very strong complexes with sulfhydryl groups (-SH) in proteins rather than with chloride. But no study for rainbow trout. Mercury was found to be more highly toxic to larval invertebrates than larval fish. The seabass larvae were more sensitive to Hg toxicity than the juvenile stage of seabass, milkfish Chanos chanos and crescent grunter Therapon jarbua. This is because early life stages of aquatic organisms are generally more sensitive to metal toxicity than older stage or adults. Also in this study declared that increasing salinity from freshwater to 7.5 and 17 ppt increases the acute toxicity of mercuric chloride on trout. For freshwater in this study, LC\(_{50}\) 96-h of mercuric chloride is 0.808 mgL\(^{-1}\) for trout, but 0.602 and 0.583 mgL\(^{-1}\) for saltwater (7.5 and 17 ppt, respectively).

Mercuric chloride has slightly toxicity to fish and other aquatic organisms. Unfortunately, because of lack of tight controls and waste waters that produced during the processes of industrial plants and other sources in many countries, there may be unexpected potential risks to the environment. Especially, depending on the increased water temperature in summer increases the solubility of mercury and salt. Thus its accumulation in fish increases, too. Fish is the major source of food from the aquatic media. Because the toxic metals accumulate though the food chain, the metal pollution in fish poses a threat to human health. It is necessary to determine the lethal effect limits of the metals accumulated in fish.

References

29. Terzi, E. and Verep, B., (2011) Effects of water hardness and temperature on the acute toxicity of mercuric chloride on rainbow trout (*Oncorhynchus mykiss*), Toxicology and Industrial Health, 1-6, SAGE.