One–generator quasi–abelian codes revisited

Somphong Jitman, Patanee Udomkavanich

Abstract: The class of 1-generator quasi-abelian codes over finite fields is revisited. Alternative and explicit characterization and enumeration of such codes are given. An algorithm to find all 1-generator quasi-abelian codes is provided. Two 1-generator quasi-abelian codes whose minimum distances are improved from Grassl’s online table are presented.

2010 MSC: 94B15, 94B60, 16A26

Keywords: Group algebras, Quasi-abelian codes, Minimum distances, 1-generator

1. Introduction

As a family of codes with good parameters, rich algebraic structures, and wide ranges of applications (see [8], [9], [11], [10], [13], [14], and references therein), quasi-cyclic codes have been studied for a half-century. Quasi-abelian codes, a generalization of quasi-cyclic codes, have been introduced in [15] and extensively studied in [7].

Given finite abelian groups $H \leq G$ and a finite field F_q, an H-quasi-abelian code is defined to be an $F_q[H]$-submodule of $F_q[G]$. Note that H-quasi-abelian codes are not only a generalization of quasi-cyclic codes (see [7], [8], [9], and [15]) if H is cyclic but also of abelian codes (see [1] and [2]) if $G = H$, and of cyclic codes (see [12]) if $G = H$ is cyclic. The characterization and enumeration of quasi-abelian codes have been established in [7]. An H-quasi-abelian code C is said to be of 1-generator if C is a cyclic $F_q[H]$-module. Such a code can be viewed as a generalization of 1-generator quasi-cyclic codes which are more frequently studied and applied (see [11], [13], and [14]). Analogous to the case of 1-generator quasi-cyclic codes, the number of 1-generator quasi-abelian codes has been determined in [7]. However, an explicit construction and an algorithm to determine all 1-generator quasi-abelian codes have not been well studied.

* This research is supported by the DPST Research Grant 005/2557 and the Thailand Research Fund under Research Grant TRG5780065.

Somphong Jitman (Corresponding Author); Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand (email: sjitman@gmail.com).
Patanee Udomkavanich; Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand (email: pattanee.u@chula.ac.th).

http://dx.doi.org/10.13069/jacodesmath.09585
In this paper, we give an alternative discussion on the algebraic structure of 1-generator quasi-abelian codes and an algorithm to find all 1-generator quasi-abelian codes. Examples of new codes derived from 1-generator quasi-abelian codes are presented.

The paper is organized as follows. In Section 2, we recall some notations and basic results. An alternative discussion on the algebraic structure of 1-generator quasi-abelian codes is given in Section 3 together with an algorithm to find all 1-generator quasi-abelian codes and the number of such codes. Examples of new codes derived from 1-generator quasi-abelian codes are presented in Section 4.

2. Preliminaries

Let \(\mathbb{F}_q \) denote a finite field of order \(q \) and let \(G \) be a finite abelian group of order \(n \), written additively. Denote by \(\mathbb{F}_q[G] \) the group ring of \(G \) over \(\mathbb{F}_q \). The elements in \(\mathbb{F}_q[G] \) will be written as \(\sum_{g \in G} \alpha_g Y^g \), where \(\alpha_g \in \mathbb{F}_q \). The addition and the multiplication in \(\mathbb{F}_q[G] \) are given as in the usual polynomial rings over \(\mathbb{F}_q \) with the indeterminate \(Y \), where the indices are computed additively in \(G \). We note that \(Y^0 = 1 \) is the identity of \(\mathbb{F}_q[G] \), where 1 is the identity in \(\mathbb{F}_q \) and 0 is the identity of \(G \).

Given a ring \(R \), a linear code of length \(n \) over \(R \) refers to a submodule of the \(R \)-module \(R^n \). A linear code \(C \) in \(\mathbb{F}_q[G] \) is called an \(H \)-quasi-abelian code if \(C \) is an \(\mathbb{F}_q[H] \)-module, i.e., \(C \) is closed under the multiplication by the elements in \(\mathbb{F}_q[H] \). Such a code will be called a quasi-abelian code if \(H \) is not specified or where it is clear in the context. An \(H \)-quasi-abelian code \(C \) is said to be of 1-generator if \(C \) is a cyclic \(\mathbb{F}_q[H] \)-module. Since every \(H \)-quasi-abelian code \(C \) in \(\mathbb{F}_q[G] \) is an \(\mathbb{F}_q[H] \)-module, it is also an \(\mathbb{F}_q[A] \)-module for all cyclic subgroups of \(H \). It follows that \(C \) is quasi-cyclic of index \([G]/[A] \). However, being 1-generator \(H \)-quasi-abelian does not imply that \(C \) is 1-generator quasi-cyclic. Therefore, it makes sense to study 1-generator \(H \)-quasi-abelian codes.

Assume that \(H \leq G \) such that \(|H| = n \) and the index \([G : H] = \frac{n}{m} = l \). Let \(\{ g_1, g_2, \ldots, g_l \} \) be a fixed set of representatives of the cosets of \(H \) in \(G \). Let \(R := \mathbb{F}_q[H] \). Define \(\Phi : \mathbb{F}_q[G] \to R^l \) by

\[
\Phi \left(\sum_{h \in H} \sum_{i=1}^l \alpha_{h + g_i} Y^{h + g_i} \right) = (\alpha_1(Y), \alpha_2(Y), \ldots, \alpha_l(Y)),
\]

where \(\alpha_i(Y) = \sum_{h \in H} \alpha_{h + g_i} Y^h \in R \), for all \(i \in \{1, 2, \ldots, l\} \). It is not difficult to see that \(\Phi \) is an \(R \)-module isomorphism, and hence, the next lemma follows.

Lemma 2.1. The map \(\Phi \) induces a one-to-one correspondence between \(H \)-quasi-abelian codes in \(\mathbb{F}_q[G] \) and linear codes of length \(l \) over \(R \).

Throughout, assume that \(\gcd(q, |H|) = 1 \), or equivalently, \(\mathbb{F}_q[H] \) is semisimple. Following [7, Section 3], the group ring \(R = \mathbb{F}_q[H] \) is decomposed as follows.

For each \(h \in H \), denote by \(\text{ord}(h) \) the order of \(h \) in \(H \). The \(q \)-cyclotomic class of \(H \) containing \(h \in H \), denoted by \(S_q(h) \), is defined to be the set

\[
S_q(h) := \{ q^i \cdot h \mid i = 0, 1, \ldots \} = \{ q^i \cdot h \mid 0 \leq i \leq \nu_h \},
\]

where \(q^i \cdot h := \sum_{j=1}^{q^i} h \) in \(H \) and \(\nu_h \) is the multiplicative order of \(q \) in \(\mathbb{Z}_\text{ord}(h) \).

An idempotent in a ring \(R \) is a non-zero element \(e \) such that \(e^2 = e \). An idempotent \(e \) is said to be primitive if for every other idempotent \(f \), either \(ef = e \) or \(ef = 0 \). The primitive idempotents in \(R \)
are induced by the \(q \)-cyclotomic classes of \(H \) (see [4, Proposition II.4]). Every idempotent \(e \) in \(R \) can be viewed as a unique sum of primitive idempotents in \(R \). The \(\mathbb{F}_q \)-dimension of an idempotent \(e \in R \) is defined to be the \(\mathbb{F}_q \)-dimension of \(Re \).

From [7, Subsection 3.2], \(R := \mathbb{F}_q[H] \) can be decomposed as

\[
R = Re_1 + Re_2 + \cdots + Re_s,
\]

where \(e_1, e_2, \ldots, e_s \) are the primitive idempotents in \(R \). Moreover, every ideal in \(R \) is of the form \(Re \), where \(e \) is an idempotent in \(R \).

3. 1-generator quasi-abelian codes

In [7], characterization and enumeration of 1-generator \(H \)-quasi-abelian codes in \(\mathbb{F}_q[G] \) have been given. In this section, we give alternative characterization and enumeration of such codes. The characterization in Subsection 3.1 allows us to express an algorithm to find all 1-generator \(H \)-quasi-abelian codes in \(\mathbb{F}_q[G] \) in Subsection 3.2.

Using the \(R \)-module isomorphism \(\Phi \) defined in (1), to study 1-generator \(H \)-quasi-abelian codes in \(\mathbb{F}_q[G] \), it suffices to consider cyclic \(R \)-submodules \(Ra \), where \(a = (a_1, a_2, \ldots, a_l) \in R^l \).

For each \(a = (a_1, a_2, \ldots, a_l) \in R^l \), there exists a unique idempotent \(e \in R \) such that \(Re = Ra_1 + Ra_2 + \cdots + Ra_l \). The element \(e \) is called the idempotent generator element for \(Ra \). An idempotent \(f \in R \) of largest \(\mathbb{F}_q \)-dimension such that

\[
f \cdot a = 0
\]
is called the idempotent check element for \(Ra \).

Let \(S = \mathbb{F}_q[H] \), where \(\mathbb{F}_q' \) is an extension field of \(\mathbb{F}_q \) of degree \(l \). Let \(\{a_1, a_2, \ldots, a_l\} \) be a fixed basis of \(\mathbb{F}_q' \) over \(\mathbb{F}_q \). Let \(\varphi : R^l \to S \) be an \(R \)-module isomorphism defined by

\[
a = (a_1, a_2, \ldots, a_l) \mapsto A = \sum_{i=1}^l \alpha_i a_i.
\]

Using the map \(\varphi \), the code \(Ra \) can be regarded as an \(R \)-module \(RA \) in \(S \).

Lemma 3.1 ([7, Lemma 6.1]). Let \(a \in R^l \) and let \(e \) and \(f \) be the idempotent generator and idempotent check elements of \(Ra \), respectively. Then

\[
e + f = 1
\]

and

\[
dim_{\mathbb{F}_q}(Ra) = dim_{\mathbb{F}_q}(Re) = m - dim_{\mathbb{F}_q}(Rf).
\]

For a ring \(\mathcal{R} \), denote by \(\mathcal{R}^\times \) and \(\mathcal{R}^\times \) the set of non-zero elements and the group of units of \(\mathcal{R} \), respectively.

In order to enumerate and determine all 1-generator \(H \)-quasi-abelian codes in \(\mathbb{F}_q[G] \), we need the following result.

Lemma 3.2. Let \(a, b \in R^l \) and let \(e \) be the idempotent generator of \(Ra \). Let \(A = \varphi(a) \) and \(B = \varphi(b) \), where \(\varphi \) is defined in (2). Then \(Ra = RB \) if and only if there exists \(u \in (Re)^\times \) such that \(b = uA \).

Equivalently, \(Ra = RB \) if and only if there exists \(u \in (Re)^\times \) such that \(B = uA \).
Corollary 3.4. \textbf{Proof.} Write $a = (a_1, a_2, \ldots, a_I)$ and $b = (b_1, b_2, \ldots, b_I)$, where $a_i, b_i \in R$ for all $i \in \{1, 2, \ldots, I\}$.

Assume that $Ra = Rb$. Then $b = va$ for some $v \in R$. Let $u = ve \in Re$. Note that, for each $i \in \{1, 2, \ldots, I\}$, we have $a_i = r_i e$ for some $r_i \in R$. Then $ua_i = (ve)(r_i e) = v r_i e^2 = v r_i e = va_i = b_i$ for all $i \in \{1, 2, \ldots, I\}$. Hence, $b = ua$ and

$$Re = Ra = Rb = R(ua) = uRa = uRe.$$

Since $u \in Re$ and $Re = uRe$, we have $u \in (Re)^\times$.

Conversely, assume that there exists $u \in (Re)^\times$ such that $b = ua$. Then $Rb = Rua \subseteq Ra$. We need to show that $\dim_{F_q}(Ra) = \dim_{F_q}(Rb)$. Let e' be an idempotent generator of Rb. We have

$$Re' = Rb = R(ub) = u(Rb) = u(Re) = Re$$

since $u \in (Re)^\times$. Hence, by Lemma 3.1, we have

$$\dim_{F_q}(Ra) = \dim_{F_q}(Re) = \dim_{F_q}(Re') = \dim_{F_q}(Rb).$$

Therefore, $Rb = Ra$ as desired. \hfill \Box

3.1. The enumeration of 1-generator quasi-abelian codes

First, we focus on the number of 1-generator H-quasi-abelian codes of a given idempotent generator in $F_q[H]$. Using the fact that the idempotents in $F_q[H]$ are known, the number of 1-generator H-quasi-abelian codes in $F_q[G]$ can be concluded.

Proposition 3.3. Let $\{e_1, e_2, \ldots, e_r\}$ be a set of primitive idempotents of R and $e = e_1 + e_2 + \cdots + e_r$. Then the following statements hold.

i) e_1, e_2, \ldots, e_r are pairwise orthogonal (non-zero) idempotents of Se.

ii) e_j is the identity of Se_j for all $j \in \{1, 2, \ldots, r\}$.

iii) e is the identity of Se.

iv) $Se = Se_1 \oplus Se_2 \oplus \cdots \oplus Se_r$.

\textbf{Proof.} For i), it is clear that e_1, e_2, \ldots, e_r are pairwise orthogonal (non-zero) idempotents in S. They are in Se since $e_j = e_j \in Se$ for all $j \in \{1, 2, \ldots, r\}$. The statements ii) and iii) follow since $se_j = se_j^2 = (se_j)e_j$ for all $se_j \in Se_j$ and $se = se^2 = (se)e$ for all $se \in Se$. The last statement can be verified using i). \hfill \Box

Corollary 3.4. Let $\{e_1, e_2, \ldots, e_r\}$ be a set of primitive idempotents of R and $e = e_1 + e_2 + \cdots + e_r$. Then the following statements hold.

i) e_1, e_2, \ldots, e_r are pairwise orthogonal (non-zero) idempotents of Re.

ii) e_j is the identity of Re_j for all $j \in \{1, 2, \ldots, r\}$.

iii) e is the identity of Re.

iv) $Re = Re_1 \oplus Re_2 \oplus \cdots \oplus Re_r$, where Re_j is isomorphic to an extension field of F_q for all $j \in \{1, 2, \ldots, r\}$.

Let $\Omega = \left\{ \sum_{j=1}^r A_j \mid A_j \in (Se_j)^\times \right\} \subset Se$. Then we have the following results.

Lemma 3.5. Let $A = \sum_{i=1}^l a_i a_i \in S$, where $a_i \in R$, and let $b \in R$. Then $RA \subseteq Sb$ if and only if $Ra_1 + Ra_2 + \cdots + Ra_l \subseteq Rb.$
Proof. Assume that \(RA \subseteq Sb \). Then \(A = Bb \) for some \(B \in S \). Write \(B = \sum_{i=1}^{l} \alpha_i b_i \), where \(b_i \in R \). Then \(a_i = bb_i \) for all \(i \in \{1,2,\ldots,l\} \). Hence, we have
\[
\sum_{i=1}^{l} r_i a_i = \sum_{i=1}^{l} r_i bb_i = \left(\sum_{i=1}^{l} r_i b_i \right) b \in Rb
\]
for all \(\sum_{i=1}^{l} r_i a_i \in Ra_1 + Ra_2 + \cdots + Ra_l \).

Conversely, it suffices to show that \(A \in Sb \). Since \(Ra_1 + Ra_2 + \cdots + Ra_l \subseteq Rb \), we have \(a_i \in Rb \) for all \(i \in \{1,2,\ldots,l\} \). Then, for each \(i \in \{1,2,\ldots,l\} \), there exists \(r_i \in R \) such that \(a_i = r_i b \). Hence,
\[
A = \sum_{i=1}^{l} \alpha_i a_i = \sum_{i=1}^{l} \alpha_i r_i b = \left(\sum_{i=1}^{l} \alpha_i r_i \right) b \in Sb
\]
as desired.

Lemma 3.6. Let \(A = \sum_{i=1}^{l} \alpha_i a_i \in Se_i \), where \(a_i \in R \). Then \(A \in \Omega \) if and only if
\[
Re = Ra_1 + Ra_2 + \cdots + Ra_l
\]
Proof. First, we note that \(RA \subseteq Se \) since \(A \in Se \). Then \(Ra_1 + Ra_2 + \cdots + Ra_l \subseteq Re \) by Lemma 3.5.

Assume that \(A \in \Omega \). Then \(A = A_1 + A_2 + \cdots + A_r \), where \(A_j \in (Se_j)^* \). We have \(Ae_j = A_j \neq 0 \) for all \(j \in \{1,2,\ldots,r\} \). Suppose that \(Ra_1 + Ra_2 + \cdots + Ra_l \subseteq Re \). By Corollary 3.4, we have \(Re = Re_1 \oplus Re_2 \oplus \cdots \oplus Re_r \). Then
\[
Ra_1 + Ra_2 + \cdots + Ra_l \subseteq \overline{Re}_j = R(e - e_j)
\]
for some \(j \in \{1,2,\ldots,r\} \), where \(\overline{Re}_j := Re_1 \oplus \cdots \oplus Re_{j-1} \oplus Re_{j+1} \oplus \cdots \oplus Re_r \). By Lemma 3.5, we have
\[
0 \neq A_j = Ae_j \in RA \subseteq S(e - e_j),
\]
a contradiction. Therefore, \(Ra_1 + Ra_2 + \cdots + Ra_l = Re \).

Conversely, assume that \(Re = Ra_1 + Ra_2 + \cdots + Ra_l \). Then \(RA \subseteq Se \) by Lemma 3.5. Since \(A \in Se \), by Theorem 3.3, we have \(A = A_1 + A_2 + \cdots + A_r \), where \(A_j \in Se_j \) for all \(j \in \{1,2,\ldots,r\} \). Suppose that \(A_j = 0 \) for some \(j \in \{1,2,\ldots,r\} \). Then \(RA = \overline{RA}_j \subseteq \overline{Se}_j = S(e - e_j) \). By Lemma 3.5, we have
\[
Re = Ra_1 + Ra_2 + \cdots + Ra_l \subseteq R(e - e_j)
\]
which is a contradiction. Hence, \(A_j \in (Se_j)^* \) for all \(j \in \{1,2,\ldots,r\} \).

Corollary 3.7. Let \(A = \sum_{i=1}^{l} \alpha_i a_i \in Se_j \), where \(a_i \in R \). Then \(A \in (Se_j)^* \) if and only if \(Re_j = Ra_1 + Ra_2 + \cdots + Ra_l \).

Let \(j \in \{1,2,\ldots,r\} \) and let \(k_j \) denote the \(\mathbb{F}_q \)-dimension of \(e_j \). Then \(Re_j \) is isomorphic to a finite field of \(q^{k_j} \) elements.

Define an equivalence relation on \((Se_j)^* \) by
\[
A \sim B \iff \exists u \in (Re_j)^* \text{ such that } A = uB.
\]
For \(A \in (Se_j)^* \), denote by \([A]\) the equivalence class of \(A \) and let \([(Se_j)^*] = \{ [A] \mid A \in (Se_j)^* \} \).

Lemma 3.8. Let \(j \in \{1,2,\ldots,r\} \). Then \(|[A]| = q^{k_j} - 1 \) for all \(A \in (Se_j)^* \).
Proof. Let \(A \in (Se_j)^* \) and define \(\rho : (Re_j)^X \to [A] \),
\[
u \mapsto uA.
\]
From the definition of \(\sim \), \(\rho \) is a well-defined surjective map. For each \(u_1, u_2 \in (Re_j)^X \), if \(u_1A = u_2A \), then \((u_1 - u_2)A = 0 \). Write \(A = \sum_{i=1}^l a_i \), where \(a_i \in R \). Then \(a_i(u_1 - u_2) = 0 \) for all \(i \in \{1, 2, \ldots, l\} \).
Since \(A \in (Se_j)^* \), by Corollary 3.7, we can write \(e_j = \sum_{i=1}^l r_i a_i \), where \(r_i \in R \). Hence,
\[
e_j(u_1 - u_2) = \left(\sum_{i=1}^l r_i a_i \right)(u_1 - u_2) = \sum_{i=1}^l r_i a_i(u_1 - u_2) = 0 \in Re_j.
\]
Since \(e_j \) is the identity of \(Re_j \), it follows that \(u_1 = u_2 \in (Re_j)^X \). Hence, \(\rho \) is a bijection. Therefore, \(|[A]| = |(Re_j)^X| = |F_q^r| = q^{kj} - 1 \).

Corollary 3.9. For each \(i \in \{1, 2, \ldots, r\} \), we have
\[
|[\{Se_j\}^*]| = \frac{|(Se_j)^*|}{|A|} = \frac{q^{kj} - 1}{q^{kj} - 1}.
\]
Let \(\Omega \) be the set of all \(i \in \Omega \). Then \(|\Omega| = \prod_{j=1}^r \frac{q^{kj} - 1}{q^{kj} - 1} \).

The number of 1-generator quasi-abelian codes sharing a idempotent has been determined in \[7, Corollary 6.1\]. Here, an alternative proof using a different technique is provided.

Theorem 3.10. Let \(\mathcal{C} \) denote the set of all 1-generator \(H \)-quasi-abelian codes in \(\mathbb{F}_q[G] \) with idempotent generator \(e \). Then there exists a one-to-one correspondence between \(\{\omega\} \) and \(\mathcal{C} \). Hence, the number of 1-generator quasi-abelian codes having \(e \) as their idempotent generator is
\[
\prod_{j=1}^r \frac{q^{kj} - 1}{q^{kj} - 1}.
\]
Proof. Define \(\sigma : \Omega \to \mathcal{C} \),
\[
([A_1], [A_2], \ldots, [A_r]) \mapsto Ra,
\]
where \(A := A_1 + A_2 + \cdots + A_r \in S \) is viewed as \(A = \sum_{i=1}^l a_i \) and \(a := (a_1, a_2, \ldots, a_l) \).
Since \(A_j \in (Se_j)^* \) for all \(j \in \{1, 2, \ldots, r\} \), we have \(A \in \Omega \). Then \(Re = Ra_1 + Ra_2 + \cdots + Ra_l \) by Lemma 3.6, and hence, \(Ra \) is a 1-generator quasi-abelian code with idempotent generator \(e \), i.e., \(Ra \in \mathcal{C} \).
For \(([A_1], [A_2], \ldots, [A_r]) = ([B_1], [B_2], \ldots, [B_r]) \in \Omega \), there exists \(u_j \in (Re_j)^X \) such that \(A_j = u_jB_j \) for all \(j \in \{1, 2, \ldots, r\} \). Let \(u := u_1 + u_2 + \cdots + u_r \). Then
\[
u (u_1^{-1} + u_2^{-1} + \cdots + u_r^{-1}) = e_1 + e_2 + \cdots + e_r = e
\]
is the identity of \(Re \) (see Corollary 3.4), where \(u_j^{-1} \) refers to the inverse of \(u_j \) in \(Re_j \). Hence, \(u \) is a unit in \((Re)^X \). Let \(B := \sum_{j=1}^r B_j \). Then
\[
A = \sum_{j=1}^r A_j = \sum_{j=1}^r u_j B_j = uB.
\]
Hence, \(Ra = Rb \) by Lemma 3.2. Therefore, \(\sigma \) is a well-defined map.
For \([[A_1],[A_2],\ldots,[A_r]]\),\([[B_1],[B_2],\ldots,[B_s]]\) \in [\Omega], if \(Ra = Rb\), then, by Lemma 3.2, there exists \(u \in (Re)^{\times}\) such that \(A = uB\). Then \(A_j = uB_j = u e_j B_j\) since \(e_j\) is the identity of \(S e_j\) by Proposition 3.3. Since \(A_j \in (Se_j)^{*}\), \(ue_j\) is a non-zero in \(Re_j\) which is a finite field. Thus \(ue_j\) is a unit in \((Re_j)^{\times}\). Hence,

\[
([A_1],[A_2],\ldots,[A_r]) = ([B_1],[B_2],\ldots,[B_s])
\]

which implies that \(\sigma\) is an injective map.

To verify that \(\sigma\) is surjective, let \(Ra \in \mathcal{E}\), where \(a = (a_1,a_2,\ldots,a_l) \in R^l\). Then \(Re = Ra_1 + Ra_2 + \cdots + Ra_l\). Hence, by Lemma 3.6, we conclude that

\[
A := \sum_{i=1}^{l} a_i e_i \in \Omega.
\]

Write \(A = \sum_{j=1}^{r} A_j\), where \(A_j \in (Se_j)^{*}\). Then \([A_1],[A_2],\ldots,[A_r] \in [\Omega]\), and hence,

\[
\sigma(([A_1],[A_2],\ldots,[A_r])) = Ra.
\]

\(\square\)

3.2. The generators for 1-generator quasi-abelian codes

In this subsection, we establish an algorithm to find all 1-generator \(H\)-quasi-abelian codes in \(\mathbb{F}_q[G]\). Note that every idempotent in \(R := \mathbb{F}_q[H]\) can be written as a unique sum of primitive idempotents in \(R\). Hence, it is sufficient to study \(H\)-quasi-abelian codes of a given idempotent generator.

Let \(e = e_1 + e_2 + \cdots + e_r\) be an idempotent in \(R\), where, for each \(j \in \{1, 2, \ldots, r\}\), \(e_j\) is the primitive idempotent in \(R\) induced by a \(q\)-cyclotomic class \(S_q(h_j)\) for some \(h_j \in H\).

For each \(j \in \{1, 2, \ldots, r\}\), assume that \(e_j\) is decomposed as

\[
e_j = e_{j1} + e_{j2} + \cdots + e_{js_j},
\]

where, for each \(i \in \{1, 2, \ldots, s_j\}\), \(e_{ji}\) is the primitive idempotent in \(S_q\) defined corresponding to a \(q^i\)-cyclotomic class \(S_{q^i}(h_{ji})\) for some \(h_{ji} \in S_q(h_j)\).

Note that all the elements in \(S_{q^i}(h_{ji})\) have the same order. Hence, the \(q^i\)-cyclotomic classes \(S_{q^i}(h_{ji})\) have the same size for all \(1 \leq i \leq s_j\). Without loss of generality, we assume that \(e_{j1}\) is defined corresponding to \(S_{q^1}(h_j)\). For each \(j \in \{1, 2, \ldots, r\}\), let \(k_j\) and \(d_j\) denote the \(\mathbb{F}_q\)-dimension of \(e_j\) and the \(\mathbb{F}_q\)-dimension of \(e_{j1}\), respectively. Then \(k_j\) and \(d_j\) are the smallest positive integers such that

\[
q^{k_j} \cdot h_j = h_j \quad \text{and} \quad q^{d_j} \cdot h_j = h_j.
\]

Then \(k_j | d_j\) which implies that

\[
\frac{k_j}{\gcd(t,k_j)} | d_j. \quad \text{Since} \quad q^{\frac{k_j}{\gcd(t,k_j)}} \cdot h_j = q^{d_j \frac{k_j}{\gcd(t,k_j)}} \cdot h_j = h_j, \quad \text{we have} \quad d_j = \frac{k_j}{\gcd(t,k_j)}.
\]

It follows that \(d_j = \frac{k_j}{\gcd(t,k_j)}\). Hence, \(e_{j1}\)’s have the same \(q^i\)-size \(d_j = \frac{k_j}{\gcd(t,k_j)}\) and \(s_j = \gcd(t,k_j)\).

Using arguments similar to those in the proof of Proposition 3.3, we conclude the following result.

Proposition 3.11. Let \(\{e_1,e_2,\ldots,e_r\}\) be a set of primitive idempotents of \(R\). Assume that \(e_j = e_{j1} + e_{j2} + \cdots + e_{js_j}\), where \(e_{ji}\) is a primitive idempotent in \(S\) for all \(i \in \{1, 2, \ldots, s_j\}\). Then the following statements hold.

i) For \(j \in \{1, 2, \ldots, r\}\), the elements \(e_{j1},e_{j2},\ldots,e_{js_j}\) are pairwise orthogonal (non-zero) idempotents of \(Se_j\).

ii) \(e_{ji}\) is the identity of \(Se_{ji}\) for all \(j \in \{1, 2, \ldots, r\}\) and \(i \in \{1, 2, \ldots, s_j\}\).
iii) \(e_j = e_{j_1} + e_{j_2} + \cdots + e_{j_s_j} \) is the identity of \(\text{Se}_j \) for all \(j \in \{1, 2, \ldots, r\} \).

iv) For \(j \in \{1, 2, \ldots, r\} \), we have \(\text{Se}_j = \text{Se}_{j_1} \oplus \text{Se}_{j_2} \oplus \cdots \oplus \text{Se}_{j_s_j} \), where \(\text{Se}_{j_i} \) is an extension field of \(\mathbb{F}_q \) of order \(q^{d_j} \) for all \(i \in \{1, 2, \ldots, s_j\} \).

Theorem 3.12. Let \(j \in \{1, 2, \ldots, r\} \) be fixed. For \(i \in \{1, 2, \ldots, s_j\} \), let \(\pi_i \) be a primitive element of \(\text{Se}_{j_i} \), a finite field of \(q^{d_j} \) elements. Let \(L_j = \frac{q^{d_j} - 1}{q^j - 1} \) and \(T_j = \{\infty, 0, 1, 2, \ldots, q^j - 2\} \). Then the elements

\[
\pi_t^\nu + \pi_{t+1}^\nu + \cdots + \pi_{s_j}^\nu,
\]

for all \(1 \leq t \leq s_j \), \(0 \leq \nu_i \leq L_j - 1 \), and \(\nu_{t+1}, \nu_{t+2}, \ldots, \nu_{s_j} \in T_j \), are a complete set of representatives of \(\{(\text{Se}_j)^{\star}\} \). (By convention, \(\pi_0^\infty = 0 \).)

Proof. Note that the number of elements in (3) is

\[
L_j q^{d_j(s_j - 1)} + L_j q^{d_j(s_j - 2)} + \cdots + L_j = \frac{q^{d_j} - 1}{q^j - 1} = |((\text{Se}_j)^\star)|.
\]

Hence, it suffices to show that the elements in (3) are in different equivalence classes. Let

\[
A = \pi_t^\nu + \pi_{t+1}^\nu + \cdots + \pi_{s_j}^\nu \quad \text{and} \quad B = \pi_x^\mu + \pi_{x+1}^\mu + \cdots + \pi_{y}^\mu,
\]

where \(0 \leq \nu_i, \mu_i \leq L_j - 1, \nu_{t+1}, \nu_{t+2}, \ldots, \nu_{s_j} \in T_j \), and \(\mu_{x+1}, \mu_{x+2}, \ldots, \mu_{y} \in T_j \). Assume that \([A] = [B]\). Then there exists \(u \in (\text{Re}_j)^\times \) such that

\[
\pi_t^\nu + \pi_{t+1}^\nu + \cdots + \pi_{s_j}^\nu = A = uB = u\pi_x^\mu + u\pi_{x+1}^\mu + \cdots + u\pi_y^\mu.
\]

Since \(\pi_t^\nu \in (\text{Se}_{j_1})^\times \) and \(\pi_x^\mu \in (\text{Se}_{j_2})^\times \), by the decomposition in Proposition 3.11, \(t = x \) and \(\pi_t^\nu = u\pi_x^\mu \in \text{Se}_{j_1} \). Then \(u\pi_x^\mu \in (\text{Re}_{j_2})^\times \). Since \(u \in (\text{Re}_j)^\times \), we have \(u^{q^j - 1} = 1 \), and hence, \(e_j = e_j \pi_x^{-\mu} = \pi_t^{(\nu - \mu)(q^j - 1)} \). Since \(0 \leq \nu_i, \mu_i \leq L_j - 1 \) and \(\pi_t \) has order \(q^{d_j} - 1 \), we conclude that \(\nu_i = \mu_i \). Hence, \(u\pi_x^\mu = e_j \) which implies \((u - e_j)e_j = 0 \) in \(\text{Se}_{j_1} \). It follows that

\[
S(u - e_j) \subseteq S(e_{j_1} + \cdots + e_{j_1+1} + \cdots + e_{j_s}) \subseteq \text{Se}_j.
\]

Since \(u, e_j \in \text{Re}_j \), we have \(u - e_j \in \text{Re}_j \) and \(R(u - e_j) \subseteq \text{Re}_j \). Hence, \(R(u - e_j) \) is the zero ideal, i.e., \(u = e_j \). Therefore, \(A = uB = e_jB = B \) since \(e_j \) is the identity of \(\text{Se}_j \).

The following corollary now follows from Theorem 3.10 and Theorem 3.12.

Corollary 3.13. Let \(\{e_1, e_2, \ldots, e_r\} \) be a set of primitive idempotents of \(R \) and \(e = e_1 + e_2 + \cdots + e_r \). Then all 1-generator quasi-abelian codes having \(e \) as their idempotent generator are of the form

\[
A_1 + A_2 + \cdots + A_r,
\]

where \(A_j \in (\text{Se}_j)^\star \) is as defined in (3).

Combining the results above, we summarize the steps of finding all 1-generator \(H \)-quasi-abelian codes in \(\mathbb{F}_q[G] \) as in Algorithm 1. We note that the 1-generator \(H \)-quasi-abelian codes in \(\mathbb{F}_q[G] \) are possible to determined using [7, Theorem 6.1] which depend on linear codes of dimension 1 over various extension fields of \(\mathbb{F}_q \). Using this concept, the algorithm might look more tedious and complicated.

An illustrative example for Algorithm 1 is given as follows.

Example 3.14. Let \(q = 2 \), \(G = \mathbb{Z}_3 \times \mathbb{Z}_6 \) and \(H = \mathbb{Z}_3 \times 2\mathbb{Z}_6 \). Denote by \(a_0 := (0, 0), a_1 := (1, 0), a_2 := (2, 0), a_3 := (0, 2), a_4 := (1, 2), a_5 := (2, 2), a_6 := (0, 4), a_7 := (1, 4), \) and \(a_8 := (2, 4) \), the elements in \(H \). Then \(l = [G : H] = 2 \) and the elements in \(H \) can be partitioned into the following 2-cyclotomic
For abelian groups $H \leq G$ and a finite field F_q with $\gcd(q, |H|) = 1$ and $|G : H| = l$, do the following steps.

1. Compute the q-cyclothetic classes of H in G.
2. Compute the set $\{e_1, e_2, \ldots, e_r\}$ of primitive idempotents of $R = F_q[H]$ (see [4, Proposition II.4]).
3. For each $1 \leq j \leq r$, compute a set B_j of a complete set of representatives of $[(Se_j)^*]$ (see Theorem 3.12).
4. Compute the idempotents of R, i.e., the set
 \[T = \left\{ \sum_{j=1}^{l} e_{ij} \mid 1 \leq t \leq r \text{ and } 1 \leq i_1 < i_2 < \cdots < i_t \leq r \right\}. \]
5. For each $e = \sum_{j=1}^{l} e_{ij} \in T$, compute the 1-generator quasi-abelian codes having e as their idempotent generator of the form
 \[A_1 + A_2 + \cdots + A_t, \]
 where $A_j \in B_{i_j}$ (see Corollary 3.13).
6. Run e over all elements of T, the 1-generator H-quasi-abelian codes in $F_q[G]$ are obtained.

Algorithm 1. Steps for determining all 1-generator H-quasi-abelian codes in $F_q[G]$

classes $S_2(a_0) = \{a_0\}$, $S_2(a_1) = \{a_1, a_2\}$, $S_2(a_3) = \{a_3, a_6\}$, $S_2(a_4) = \{a_4, a_8\}$, and $S_2(a_5) = \{a_7, a_5\}$.
From [4, Proposition II.4], we note that
\[
\begin{align*}
e_1 &= Y^{a_0} + Y^{a_1} + Y^{a_2} + Y^{a_3} + Y^{a_4} + Y^{a_5} + Y^{a_6} + Y^{a_7} + Y^{a_8}, \\
e_2 &= Y^{a_1} + Y^{a_2} + Y^{a_3} + Y^{a_4} + Y^{a_5} + Y^{a_6} + Y^{a_7} + Y^{a_8}, \\
e_3 &= Y^{a_3} + Y^{a_4} + Y^{a_5} + Y^{a_6} + Y^{a_7} + Y^{a_8}, \\
e_4 &= Y^{a_4} + Y^{a_5} + Y^{a_6} + Y^{a_7} + Y^{a_8}, \\
e_5 &= Y^{a_1} + Y^{a_2} + Y^{a_3} + Y^{a_4} + Y^{a_5} + Y^{a_6} + Y^{a_7} + Y^{a_8},
\end{align*}
\]
are primitive idempotents of $R := F_2[H]$ induced by $S_2(a_0)$, $S_2(a_1)$, $S_2(a_3)$, $S_2(a_4)$, and $S_2(a_5)$, respectively.

Let $e := e_1 + e_2 + e_3$. From Theorem 3.10, it follows that the number of 1-generator H-quasi abelian codes in $F_2[G]$ with idempotent generator e is $3 \cdot 5 \cdot 5 = 75$.

Let $S := F_4[H]$, where $F_4 = \{0, 1, \alpha, \alpha^2 = 1 + \alpha\}$. Then $e_2 = e_{21} + e_{22}$ and $e_3 = e_{31} + e_{32}$, where
\[
\begin{align*}
e_{21} &= Y^{a_0} + \alpha Y^{a_1} + \alpha Y^{a_2} + Y^{a_3} + \alpha^2 Y^{a_4} + \alpha Y^{a_5} + \alpha^2 Y^{a_6} + \alpha Y^{a_7} + \alpha Y^{a_8}, \\
e_{22} &= Y^{a_1} + \alpha Y^{a_2} + \alpha Y^{a_3} + \alpha Y^{a_4} + \alpha Y^{a_5} + \alpha^2 Y^{a_6} + \alpha^2 Y^{a_7} + \alpha^2 Y^{a_8}, \\
e_{31} &= Y^{a_3} + Y^{a_4} + Y^{a_5} + \alpha^2 Y^{a_6} + \alpha Y^{a_7} + \alpha Y^{a_8}, \\
e_{32} &= Y^{a_4} + Y^{a_5} + \alpha Y^{a_6} + \alpha Y^{a_7} + \alpha Y^{a_8},
\end{align*}
\]
are primitive idempotents in S induced by 4-cyclothetic classes $\{a_1\}$, $\{a_2\}$, $\{a_3\}$ and $\{a_6\}$, respectively.

Now, we have $k_1 = 1$, $k_2 = k_3 = 2$, $d_1 = d_2 = d_3 = 1$, $s_1 = 1$, and $s_2 = s_3 = 2$. It follows that $L_1 = \frac{2^2 - 1}{2 - 1} = 3$, $L_2 = L_3 = \frac{2^2 - 1}{2 - 1} = 1$, and $T_1 = T_2 = T_3 = \{\infty, 0, 1, 2\}$.

Then ae_1, ae_{21}, ae_{22}, ae_{31}, and ae_{32} are primitive elements of Se_1, Se_{21}, Se_{22}, Se_{31}, and Se_{32}, respectively.
respectively. Therefore, we have that
\[
B_1 = \{ e_1, \alpha e_1, \alpha^2 e_1 \}, \\
B_2 = \{ e_{21}, e_{21} + e_{22}, e_{21} + \alpha e_{22}, e_{21} + \alpha^2 e_{22} \}, \text{ and} \\
B_2 = \{ e_{31}, e_{31} + e_{32}, e_{31} + \alpha e_{32}, e_{31} + \alpha^2 e_{32} \}
\]
are complete sets of representatives of \([(Se_1)^*], [(Se_2)^*], \text{ and } [(Se_3)^*]]$, respectively. Hence, all the generators of the 75 1-generator H-quasi-abelian codes in $F_2[G]$ with idempotent generator e are of the form
\[
A_1 + A_2 + A_3,
\]
where $A_i \in B_i$ for all $i \in \{1, 2, 3\}$.

In order to find permutation inequivalent 1-generator H-quasi-abelian codes, the following theorem is useful.

Theorem 3.15. Let $H \leq G$ be finite abelian groups of index $[G : H] = l$ and let \(\{\alpha^i \mid 1 \leq i \leq l\}\) be a fixed basis of F_q over F_q. If $A = \sum_{i=1}^{l} a_i \alpha^i \in S_e$, then A and $A^q = \sum_{i=1}^{l} a_i^q \alpha^{i+1}$ generate permutation equivalent H-quasi-abelian codes (viewed in $F_q[G]$) with the same idempotent generator.

Proof. Let e be the idempotent generator of a quasi-abelian code RA. Then
\[
Ra_1^q + Ra_2^q + \cdots + Ra_l^q \subseteq Ra_1 + Ra_2 + \cdots + Ra_l = Re
\]
Assume that $e = \sum_{i=1}^{l} r_i a_i$, where $r_i \in R$. It follows that
\[
e = e^q = \sum_{i=1}^{l} r_i^q a_i^q \in Ra_1^q + Ra_2^q + \cdots + Ra_l^q.
\]
Hence, we have $Re = Ra_1^q + Ra_2^q + \cdots + Ra_l^q$. Therefore, A and A^q generate 1-generator H-quasi-abelian codes with the same idempotent generator e.

Let $\psi : R \rightarrow R$ be a ring homomorphism defined by
\[\gamma \mapsto \gamma^q.\]
Let $\gamma = \sum_{h \in H} \gamma_h Y^h$ and $\beta = \sum_{h \in H} \beta_h Y^h$ be elements in R, where γ_h and β_h are elements in F_q. If $\psi(\gamma) = \psi(\beta)$, then
\[
0 = \gamma^q - \beta^q = (\gamma - \beta)^q = \sum_{h \in H} (\gamma_h - \beta_h) Y^{qh}.
\]
By comparing the coefficients, we have $\gamma_h = \beta_h$ for all $h \in H$, i.e., $\gamma = \beta$. Hence, ψ is a ring automorphism and
\[
R(a_1^q, a_1^q, \ldots, a_{l-1}^q) = R(\psi(a_1), \psi(a_1), \ldots, \psi(a_{l-1})) = \Psi(R(a_1, a_1, \ldots, a_{l-1})), \tag{4}
\]
where Ψ is a natural extension of ψ to R^l.

Since $\psi(\gamma) = \sum_{h \in H} \gamma_h Y^{qh}$, $\psi(\gamma)$ is just a permutation on the coefficients of γ. Hence, by (4), $\psi \circ \Phi$ is a permutation on $F_q[G]$ such that $\Phi^{-1}(R(a_1^q, a_1^q, \ldots, a_{l-1}^q))$ is permutation equivalent to $\Phi^{-1}(R(a_1, a_1, \ldots, a_{l-1}))$ in $F[G]$, where Φ is the R-module isomorphism defined in (1). Therefore, the result follows since $R(a_1, a_1, \ldots, a_{l-1})$ is permutation equivalent to $R(a_1, a_2, \ldots, a_l)$.
4. Computational results

It has been shown in [6] and [7] that a family of quasi-abelian codes contains various new and optimal codes. Here, we present other 2 new codes from 1-generator quasi-abelian codes together with 1 new code obtained by shortening of one of these codes.

Given an abelian group \(H = \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \) of order \(n = n_1n_2 \), denote by \(u = (u_0, u_1, u_2, \ldots, u_{n-1}) \in \mathbb{F}_q^n \) the vector representation of

\[
u = \sum_{j=0}^{n_2-1} \sum_{i=0}^{n_1-1} u_{jn_1+i} Y^{(i,j)} \quad \text{in} \quad \mathbb{F}_q[H].
\]

Let

\[
C_{(a,b)} := \{(fa, fb) \mid f \in \mathbb{F}_q[H]\},
\]

where \(a \) and \(b \) are elements in \(\mathbb{F}_q[H] \). Using (5), 2 quasi-abelian codes whose minimum distance improves on Grassl’s online table [5] can be found. The codes \(C_1 \) and \(C_2 \) are presented in Table 1 and the generator matrices of \(C_1 \) and \(C_2 \) are

\[
G_1 = I_{14} \begin{bmatrix}
1 & 3 & 0 & 3 & 4 & 1 & 3 & 2 & 0 & 4 & 1 & 4 & 0 & 4 & 1 & 0 & 4 & 3 & 0 & 4 \\
1 & 3 & 4 & 3 & 1 & 4 & 0 & 2 & 4 & 1 & 3 & 0 & 2 & 2 & 4 & 3 & 1 & 1 & 3 & 4 \\
1 & 4 & 4 & 3 & 4 & 0 & 0 & 1 & 0 & 3 & 1 & 2 & 0 & 1 & 0 & 3 & 2 & 4 & 4 & 4 \\
4 & 4 & 3 & 3 & 4 & 2 & 3 & 3 & 1 & 3 & 4 & 0 & 3 & 3 & 2 & 1 & 1 & 1 & 3 & 0 \\
4 & 3 & 3 & 4 & 3 & 2 & 4 & 2 & 3 & 2 & 3 & 2 & 3 & 0 & 3 & 2 & 1 & 0 & 1 & 4 & 3 \\
4 & 4 & 2 & 4 & 4 & 1 & 4 & 1 & 2 & 4 & 2 & 1 & 4 & 0 & 1 & 1 & 2 & 0 & 4 & 0 & 4 \\
0 & 2 & 1 & 1 & 3 & 1 & 4 & 1 & 1 & 2 & 1 & 0 & 1 & 1 & 4 & 2 & 0 & 0 & 1 & 3 & 2 \\
0 & 1 & 2 & 1 & 4 & 3 & 1 & 2 & 1 & 1 & 1 & 0 & 2 & 1 & 4 & 1 & 1 & 0 & 0 & 3 & 3 & 2 \\
1 & 1 & 2 & 1 & 4 & 3 & 1 & 2 & 1 & 0 & 1 & 1 & 4 & 2 & 1 & 0 & 1 & 0 & 2 & 3 & 3 \\
1 & 2 & 2 & 3 & 4 & 4 & 4 & 4 & 1 & 3 & 1 & 4 & 4 & 3 & 3 & 1 & 0 & 1 & 2 & 2 & 4 \\
1 & 2 & 3 & 1 & 4 & 0 & 2 & 2 & 4 & 3 & 4 & 0 & 4 & 1 & 2 & 0 & 1 & 1 & 3 & 3 & 2 \\
1 & 1 & 3 & 2 & 2 & 1 & 3 & 4 & 2 & 3 & 4 & 1 & 3 & 0 & 4 & 1 & 0 & 0 & 2 & 1 & 4 & 3 \\
4 & 0 & 4 & 1 & 0 & 3 & 2 & 4 & 0 & 1 & 0 & 3 & 2 & 2 & 1 & 1 & 0 & 4 & 1 & 0 & 4 & 0 \\
4 & 1 & 4 & 0 & 2 & 3 & 0 & 0 & 4 & 1 & 2 & 3 & 0 & 3 & 4 & 3 & 0 & 1 & 4 & 1 & 0 & 4 \end{bmatrix}
\]

and

\[
G_2 = I_{11} \begin{bmatrix}
0 & 1 & 0 & 4 & 4 & 0 & 0 & 1 & 4 & 4 & 0 & 1 & 3 & 2 & 3 & 3 & 1 & 1 & 3 & 3 & 2 & 0 & 1 & 4 \\
4 & 4 & 1 & 1 & 2 & 1 & 2 & 4 & 1 & 3 & 2 & 1 & 4 & 3 & 2 & 4 & 2 & 0 & 1 & 1 & 0 & 1 & 2 \\
1 & 0 & 4 & 0 & 0 & 4 & 4 & 4 & 1 & 4 & 1 & 0 & 2 & 3 & 1 & 1 & 3 & 3 & 2 & 3 & 1 & 4 & 0 \\
0 & 1 & 0 & 4 & 0 & 4 & 1 & 0 & 3 & 1 & 3 & 0 & 3 & 1 & 4 & 3 & 1 & 4 & 3 & 3 & 4 & 1 & 4 \\
4 & 4 & 0 & 0 & 0 & 1 & 1 & 4 & 3 & 3 & 4 & 1 & 4 & 3 & 1 & 4 & 1 & 3 & 0 & 3 & 1 & 3 & 0 & 1 \\
1 & 1 & 9 & 0 & 0 & 4 & 0 & 3 & 1 & 3 & 0 & 1 & 1 & 4 & 3 & 3 & 4 & 1 & 4 & 3 & 1 & 4 & 3 & 1 & 3 \\
1 & 1 & 4 & 0 & 4 & 0 & 4 & 3 & 2 & 1 & 0 & 0 & 4 & 1 & 3 & 1 & 2 & 3 & 2 & 3 & 2 & 4 & 2 & 4 \\
4 & 0 & 4 & 0 & 0 & 1 & 4 & 1 & 0 & 2 & 3 & 3 & 1 & 1 & 3 & 3 & 2 & 3 & 1 & 4 & 0 & 4 & 4 & 1 \\
0 & 4 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 3 & 2 & 1 & 2 & 4 & 2 & 2 & 4 & 4 & 3 & 1 & 2 & 0 & 3 & 3 & 3 \\
1 & 1 & 0 & 0 & 4 & 4 & 4 & 2 & 2 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 4 & 4 & 4 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \end{bmatrix}
\]

respectively.

By puncturing \(C_2 \) at the first coordinate, a \([35,11,17]_5\) code can be obtained with minimum distance improved by 1 from Grassl’s online table [5]. All the computations are done using MAGMA [3].

Acknowledgment: The authors thank to San Ling for useful discussions and to the anonymous referees for their helpful comments.
Table 1. New codes from quasi-abelian codes

<table>
<thead>
<tr>
<th>name</th>
<th>$C_{(a,b)}$</th>
<th>H</th>
<th>a and b</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>$[36, 14, 15]_5$ $\mathbb{Z}_3 \times \mathbb{Z}_6$</td>
<td>$a = (3,3,3,0,0,1,4,3,4,0,4,4,4,3,0,1,0)$</td>
<td>$b = (2,4,1,1,3,3,0,0,4,4,1,0,0,1,4,2,2,4)$</td>
</tr>
<tr>
<td>C2</td>
<td>$[36, 11, 18]_5$ $\mathbb{Z}_3 \times \mathbb{Z}_6$</td>
<td>$a = (2,4,4,3,4,3,2,4,3,4,3,4,3,4,2,3,4,4)$</td>
<td>$b = (3,0,0,0,3,3,3,0,3,0,1,1,1,1,1,1,1)$</td>
</tr>
</tbody>
</table>

References