On Some Classes of \(r\)-AG-Groupoids

Thiti GAKETEM\(^{1,*}\)

\(^{1}\)School of Science, University of Phayao, Phayao, 56000

ABSTRACT
In this paper, we have introduced the notion of \(r\)-regular, weakly \(r\)-regular, left \(r\)-regular, right \(r\)-regular, \(r\)-completely regular and \(r\)-left quasi regular of \(r\)-AG-groupoids, and we have investigated their properties.

Keywords: \(r\)-AG-groupoid, \(r\)-regular, \(r\)-intra-regular, weakly \(r\)-regular, left \(r\)-regular, right \(r\)-regular, \(r\)-completely regular, \(r\)-left quasi regular.

1. INTRODUCTION
Kazim, M. A. and Naseeruddin, MD. defined the concept of LA-semigroup as follows: a groupoid \(S\) is called a left almost semigroup, abbreviated as LA-semigroup if \((ab)c = (cb)a\) for all \(a, b, c \in S\).

Kazim, M. A. and Naseeruddin, MD. [1, Proposition 2.1] asserted that, in every LA-semigroup \(S\), a medial law holds
\[(ab)(cd) = (ac)(bd)\] for all \(a, b, c, d \in S\).

Mushtaq, Q. and Khan, M. [2, p.322] introduced in every LA-semigroup \(S\) with left identity
\[(ab)(cd) = (db)(ca)\] for all \(a, b, c, d \in S\).

Further Khan, M., Faisal, and Amjid, V. [3] introduced if a LA-semigroup \(S\) with left identity, then the following law holds:
\[a(bc) = b(ac)\] for all \(a, b, c, d \in S\).

In this note we prefer to called left almost semigroup (LA-semigroup) as Abel-Grassmann’s groupoid (abbreviated as an “AG-groupoid”).

In [2] introduced the concepts of regular, weakly regular, left regular, right regular, completely regular and left quasi regular of an AG-groupoids as follows

Definition 1.1. [2. P1]. An element \(a\) of an AG-groupoid \(S\) is called a regular if there exists \(x \in S\) such that \(a = (ax)a\) and \(S\) is called regular if all elements of \(S\) are regular.

Definition 1.2. [2. P1]. An element \(a\) of an AG-groupoid \(S\) is called an intra-regular if there exists \(x, y \in S\) such that \(a = (x(aa))y\) and \(S\) is called intra-regular if all elements of \(S\) are intra-regular.

Definition 1.3. [2. P2]. An element \(a\) of an AG-groupoid \(S\) is called a weakly regular if there exists \(x, y \in S\) such that \(a = (ax)(ay)\) and \(S\) is called weakly regular if all elements of \(S\) are weakly regular.

Definition 1.4. [2. P2]. An element \(a\) of an AG-groupoid \(S\) is called a left regular if there exists \(x \in S\) such that \(a = x(aa)\) and \(S\) is called left regular if all elements of \(S\) are left regular.

Corresponding author, e-mail: newtonisaac41@yahoo.com
Definition 1.5. [2. P2]. An element \(a \) of an AG-groupoid \(S \) is called a right regular if there exists \(x \in S \) such that \(a = (a \alpha)x \) and \(S \) is called right regular if all elements of \(S \) are right regular.

Definition 1.6. [2. P2]. An element \(a \) of an AG-groupoid \(S \) is called a left quasi regular if there exist \(x, y \in S \) such that \(a = (\alpha x)(\gamma y) \) and \(S \) is called left quasi regular if all elements of \(S \) are left quasi regular.

Definition 1.7. [2. P2]. An element \(a \) of an AG-groupoid \(S \) is called a completely regular if \(a \) is regular, left and right regular. \(S \) is called completely regular if it is regular, left and right regular.

2. DEFINITION OF \(\Gamma \)-AG-GROUPIDS

Shah, T. and Rehman, I. [6, p.268] asserted that, in 1981, the notion of \(\Gamma \)-semigroups was introduced by Sen, M. K. Let \(S \) and \(\Gamma \) be any nonempty sets. If there exists a mapping \(\times \Gamma \rightarrow S \) written \((a, \alpha, c) \mapsto a \alpha c \), \(S \) is called a \(\Gamma \)-semigroup if \(S \) satisfies the identity \((a \alpha b) \beta c = a \alpha (b \beta c) \) for all \(a, b, c \in S \) and \(\alpha, \beta \in \Gamma \). A \(\Gamma \)-AG-groupoids analogous to \(\Gamma \)-semigroups.

Definition 2.1. [6, p.268] Let \(S \) and \(\Gamma \) be any nonempty sets. We call \(S \) to be a \(\Gamma \)-AG-groupoid if there exists a mapping \(\times \Gamma \rightarrow S \), written \((a, \alpha, b) \mapsto a \alpha b \) such that \(S \) satisfies the identity \((a \alpha b) \beta c = (a \alpha b) \beta a \) for all \(a, b, c \in S \) and \(\alpha, \beta \in \Gamma \).

Definition 2.2. [3, p.2]. Let \(S \) and \(\Gamma \) be any nonempty sets. We call \(S \) to be a \(\Gamma \)-medial if it satisfies \((a \alpha b) \beta c \gamma d = (a \alpha c) \beta (b \gamma d) \) and \(S \) is called a \(\Gamma \)-paramedial if it satisfies \((a \alpha b) \beta c \gamma d = (a \alpha c) \beta (b \gamma a) \) for all \(a, b, c, d \in S \) and \(\alpha, \beta, \gamma \in \Gamma \).

Definition 2.3. A \(\Gamma \)-AG-groupoids \(S \) with left identity, the following law hold

\[a \alpha (b \beta c) = b \alpha (a \beta c) \], for all \(a, b, c \in S \) and \(\alpha, \beta \in \Gamma \).

In this paper, we introduce the concept of a \(\Gamma \)-regular, weakly \(\Gamma \)-regular, left \(\Gamma \)-regular, right \(\Gamma \)-regular, \(\Gamma \)-completely regular and left \(\Gamma \)-quasi regular of \(\Gamma \)-AG-groupoids which is defined analogous to [2] and investigate its properties.

3. MAIN RESULTS

Definition 2.4. [6. P274]. An element \(a \) of a \(\Gamma \)-AG-groupoid \(S \) is called a \(\Gamma \)-regular if there exists \(x \in S \) and \(\alpha, \beta \in \Gamma \) such that \(a = (a \alpha x) \beta a \) and \(S \) is called \(\Gamma \)-regular if all elements of \(S \) are \(\Gamma \)-regular.

Definition 2.5. [2. P1]. An element \(a \) of a \(\Gamma \)-AG-groupoid \(S \) is called an intra-\(\Gamma \)-regular if there exist \(x, y \in S \) and \(\alpha, \beta, \gamma \in \Gamma \) such that \(a = (\alpha x(\beta a)) \gamma y \) and \(S \) is called intra-\(\Gamma \)-regular if all elements of \(S \) are intra-\(\Gamma \)-regular.

Definition 2.6. An element \(a \) of a \(\Gamma \)-AG-groupoid \(S \) is called a weakly \(\Gamma \)-regular if there exist \(x, y \in S \) and \(\alpha, \beta, \gamma \in \Gamma \) such that \(a = (a \alpha x) \beta (a \gamma y) \) and \(S \) is called weakly \(\Gamma \)-regular if all elements of \(S \) are weakly \(\Gamma \)-regular.

Definition 2.7. An element \(a \) of a \(\Gamma \)-AG-groupoid \(S \) is called a left \(\Gamma \)-regular if there exists \(x \in S \) and \(\alpha, \beta \in \Gamma \) such that \(a = \alpha x(\beta a) \) and \(S \) is called left \(\Gamma \)-regular if all elements of \(S \) are left \(\Gamma \)-regular.

Definition 2.8. An element \(a \) of a \(\Gamma \)-AG-groupoid \(S \) is called a right \(\Gamma \)-regular if there exists \(x \in S \) and \(\alpha, \beta \in \Gamma \) such that \(a = (a \alpha a) \beta x \) and \(S \) is called right \(\Gamma \)-regular if all elements of \(S \) are right \(\Gamma \)-regular.

Definition 2.9. An element \(a \) of a \(\Gamma \)-AG-groupoid \(S \) is called a left \(\Gamma \)-quasi regular if there exist \(x, y \in S \) and \(\alpha, \beta, \gamma \in \Gamma \) such that \(a = (\alpha x a) \beta (y \gamma a) \) and \(S \) is called left \(\Gamma \)-quasi regular if all elements of \(S \) are left \(\Gamma \)-quasi regular.

Definition 2.10. An element \(a \) of a \(\Gamma \)-AG-groupoid \(S \) is called a completely \(\Gamma \)-regular if \(a \) is \(\Gamma \)-regular and left (right) \(\Gamma \)-regular. \(S \) is called completely \(\Gamma \)-regular if it is \(\Gamma \)-regular, left and right \(\Gamma \)-regular.
Lemma 3.1. If S is Γ-regular (intra-Γ-regular, weakly Γ-regular, left Γ-regular, right Γ-regular, left Γ-quasi regular and completely Γ-regular) Γ-AG-groupoid, then $S = S\Gamma S$.

Proof. Let S be a Γ-regular and $a \in S$. Then there exists $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = (a\alpha\beta)b\alpha$. Thus $a = (a\alpha\beta)b\alpha \in S\Gamma S$ so $S \subseteq S\Gamma S$. Since S is a Γ-AG-groupoid we have $S\Gamma S \subseteq S$. Hence $S = S\Gamma S$.

Similarly if S is an intra-Γ-regular, weakly Γ-regular, right Γ-regular, left Γ-regular, left Γ-quasi regular, completely Γ-regular, then can show that $S = S\Gamma S$. \hfill \Box

Theorem 3.2 If S is a Γ-AG-groupoid with left identity, then S is an intra-Γ-regular if and only if for all $a \in S$, $a = (x\alpha\beta\gamma(a\omega z))$ for some $x, z \in S$ and $\alpha, \gamma, \omega \in \Gamma$.

Proof \textnormal{(\Rightarrow)} Let S be an intra-Γ-regular Γ-AG-groupoid with left identity, then for any $a \in S$ there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (x\alpha\beta\gamma(a\omega z))$. Now by using Lemma 3.1 let $y = u\omega v$ for some $u, v \in S$ and $\omega \in \Gamma$. Thus by using Definition 2.1, 2.2, 2.3, we have

$$a = (x\alpha\beta\gamma(a\omega z)) = (x\alpha\beta\gamma(a\omega z))(x\lambda\eta\omega)$$

Lemma 3.3 If S is a Γ-AG-groupoid, then the following are equivalent.
(1) S is weakly Γ-regular.

(2) S is intra-Γ-regular.

Proof (1) \Rightarrow (2) Let S be a weakly Γ-regular Γ-AG-groupoid with left identity, then for any $a \in S$ there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (a\alpha x)\beta(a\gamma y)$ and by Lemma 3.1 let $x = u\lambda v$ for some $u, v \in S$ and $\lambda \in \Gamma$. Now by using Definition 2.1, 2.2, 2.3, we have

$$a = (a\alpha x)\beta(a\gamma y) = (\gamma a a)\beta((u\lambda v)\gamma a)$$

$$= (\gamma a a)\beta((a\lambda v)\gamma u) = (a\alpha(y\lambda a))\beta((y\lambda a)\gamma u)$$

$$= (a\alpha(y\lambda a))\beta t = (\gamma a(a\lambda a))\beta t,$$

where $v \gamma u = t$ for some $t \in S$. Thus S is intra-Γ-regular.

(2) \Rightarrow (1) Let S be an intra-Γ-regular, for any $a \in S$ there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (x\alpha(a\beta a))\gamma y$ and by Lemma 3.1 let $x = u\lambda v$ for some $u, v \in S$ and $\lambda \in \Gamma$. Now by using Definition 2.1, 2.2, 2.3, we have

$$a = (y\alpha(a\lambda a))\beta t = (a\alpha(y\lambda a))\beta (v\gamma u)$$

$$= (a\alpha(y\lambda a))\beta((y\lambda a)\gamma u) = (a\alpha(y\lambda a))\beta((u\alpha\lambda)\gamma a)$$

$$= (a\alpha(y\lambda a))\beta(y\gamma a) = (a\alpha(y\lambda a))\beta(y\gamma a).$$

where $x = u\alpha\lambda v$ for some $u, v \in S$ and $\alpha \in \Gamma$. Thus S is weakly Γ-regular. □

Lemma 3.4 If S is a Γ-AG-groupoid, then the following are equivalent.

(1) S is weakly Γ-regular.

(2) S is right Γ-regular.

Proof (1) \Rightarrow (2) Let S be a weakly Γ-regular Γ-AG-groupoid with left identity, then for any $a \in S$ there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (a\alpha x)\beta(a\gamma y)$ and let $x\gamma y = t$ for some $t \in S$. Now by Γ-medial, we have $a = (a\alpha x)\beta(a\gamma y) = (a\alpha a)\beta(x\gamma y) = (a\alpha a)\beta t$. Thus S is right Γ-regular.

(2) \Rightarrow (1) Let S be a right Γ-regular, for any $a \in S$ there exists $t \in S$ and $\alpha, \beta \in \Gamma$ such that $a = (a\alpha a)\beta t$ and let $x\gamma y = t$ for some $x, y \in S$. Now by Γ-medial, we have

$$a = (a\alpha a)\beta t = (a\alpha a)\beta(x\gamma y) = (a\alpha a)\beta(x\gamma y)$$

Thus S is weakly Γ-regular. □

Lemma 3.5 If S is a Γ-AG-groupoid, then the following are equivalent.

(1) S is weakly Γ-regular.

(2) S is left Γ-regular.

Proof (1) \Rightarrow (2) Let S be a weakly Γ-regular Γ-AG-groupoid with left identity, then for any $a \in S$ there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (a\alpha x)\beta(a\gamma y)$ and let $y\alpha x = t$ for some $t \in S$. Now by Definition 2.2, we have $a = (a\alpha x)\beta(a\gamma y) = (a\alpha a)\beta(x\gamma y) = (y\alpha x)\beta(a\gamma a) = t\beta(a\gamma a)$. Thus S is left Γ-regular.

(2) \Rightarrow (1) Let S is left Γ-regular, for any $a \in S$ there exists $t \in S$ and $\beta, \gamma \in \Gamma$ such that $a = t\beta(a\gamma a)$ and let $y\alpha x = t$ for some $x, y \in S$. Now by Definition 2.2, we have

$$a = t\beta(a\gamma a) = (y\alpha x)\beta(a\gamma a) = (y\alpha a)\beta(x\gamma a) = (a\alpha a)\beta(a\gamma a).$$

Thus S is weakly Γ-regular. □
Lemma 3.6. Every weakly Γ-regular Γ-AG-groupoid with left identity is Γ-regular.

Proof. Assume that S is a weakly Γ-regular Γ-AG-groupoid with left identity then for any $a \in S$ there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (a \alpha x) \beta (a \gamma y)$. Let $x \gamma y = t$ for some $t \in S$ and $t \omega ((y \lambda x) \eta a)) = u \in S$ for some $\lambda, \omega, \eta \in \Gamma$. Now by Definition 2.1, we have

$$a = (a \alpha x) \beta (a \gamma y) = ((a \gamma y) \alpha x) \beta a$$

by Definition 2.1 and $x \gamma y = t$

$$= (t (a \alpha a) \omega (a \gamma y)) \beta a;$$

where $a = (a \alpha x) \beta (a \gamma y)$

$$= (t a (a \alpha a) \omega (a \gamma y)) \beta a;$$

by Γ-medial law

$$= (t a (a \alpha a) \omega (a \gamma y)) \beta a;$$

by Γ-paramedial law

$$= (a a (t \omega ((y \lambda x) \eta a))) \beta a;$$

by Definition 2.3

$$= (a \alpha (t \omega ((y \lambda x) \eta a))) \beta a;$$

by Definition 2.3

$$= (a \alpha u) \beta a;$$

where $t \omega ((y \lambda x) \eta a)) = u$.

Thus S is a Γ-regular.

Theorem 3.7. If S is a Γ-AG-groupoid, then the following are equivalent.

(1) S is weakly Γ-regular.

(2) S is completely Γ-regular.

Proof. (1) \Rightarrow (2) Let S be a weakly Γ-regular. Then by Lemma 3.4, 3.5, 3.6, we have S is a completely Γ-regular.

(2) \Rightarrow (1) Let S be a completely Γ-regular. Then by Lemma 3.5, we have S is a weakly Γ-regular.

Lemma 3.8 If S is a Γ-AG-groupoid, then the following are equivalent.

(1) S is weakly Γ-regular.

(2) S is left Γ-quasi regular.

Proof (1) \Rightarrow (2) Let S be a weakly Γ-regular Γ-AG-groupoid with left identity, then for any $a \in S$ there exists $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (a \alpha x) \beta (a \gamma y)$. Then

$$a = (a \alpha x) \beta (a \gamma y)$$

$$= (a \gamma x a) \beta (x \gamma a)$$

by Γ-paramedial law

$$= (x' \alpha a) \beta (y' \gamma a)$$

where $y = x'$ and $x = y'$

Thus S is left Γ-quasi regular.

(2) \Rightarrow (1) Let S be a left Γ-quasi regular Γ-AG-groupoid with left identity, then for any $a \in S$ there exists $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (x \alpha a) \beta (y \gamma a)$. Then

$$a = (x \alpha a) \beta (y \gamma a)$$

$$= (a \gamma x a) \beta (a \gamma x)$$

by Γ-paramedial law

$$= (a \alpha x' \gamma y')$$

where $y = x'$ and $x = y'$

Thus S is weakly Γ-regular.

The next Theorem will conclude of research.
Theorem 3.9. If S is a Γ-AG-groupoid, then the following are equivalent.

1. S is weakly Γ-regular.
2. S is intra-Γ-regular.
3. S is right Γ-regular.
4. S is left Γ-regular.
5. S is left Γ-quasi regular.
6. S is completely Γ-regular.
7. For all $a \in S$ there exist $x, y \in S$ and $\alpha, \omega \in \Gamma$ such that $a = (x\alpha a)(a\omega y)$.

ACKNOWLEDGEMENTS

The authors are very thankful to the learned referees for their suggestions to improve the present paper.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

