Çok Amaçlı Karar Vermede Bir yaklaşıM: Analitik Hiyerarşi Yöntemi

MesihA SAAT*

Analytic Hierarcy Process (AHP) was developed by Saaty. It is a useful method for decision making and planning for multiple-criteria problems. It has found many applications in decision theory. AHP is a theory of measurement for dealing with quantifiable and/or intangible criteria. Decision applications of the AHP are carried out in two phases: hierarhic design and evaluation. In the AHP a problem is structured as a hierarchy. The evaluation phase is based on the concept of paired comparisons. The elements in the level of the hierarchy are compared in the relative terms as to their importance or contribution to a given criterion that occupies the level immediately above the elements being compared. The AHP has already being successfully applied in a variety of fields. The use of the AHP has been facilitated greatly by the availability of the software package Expert Choice.

Giriş

ANALİTİK HIYERARŞİ YÖNTEMİ

AHY, karar teorisinde yaygın uygulama alanı olan bir yöntem olup birbiriyle çelişen, ölçülebilir ve/veya soyt kriterleri dikkate alınan bir ölçe yöntemidır. AHY bir karar verme durumda, veriler kadar değerli olan bilgi ve deneyimlerin de dikkate alınması ilkesine dayanır. AHY, kişisel kararlarından karmaşık işletme kararlarına kadar geniş bir alanda kullanılabilen bir araçtır. Teorinin bazıları, basitliğinden ve değişik koşulların her birinde aynı şekilde kullanılabilme özelliğinden kaynaklanmaktadır. (Vargas, 1989: 2)

AHY’le karar verme süreci aşağıdaki aşamalardan oluşur:
1) Karmaşık ve düzensiz bir problemi parçalara (altögelere) ayırılması, bir başka deyişle, problemin temel öğelerini ve bu öğeler arasındaki ilişkileri gösteren bir modelin oluşturulması,

2) İlgili altögelere gruplayıp düzenleyerek hıyerarşik bir yapı oluşturulması. Burada oluşturulan hıyerarşik yapı öğeler arasındaki fonksiyonel bağımlılık ilişkisini yansıtabacak şekilde olmalıdır. Bu ilişkileri oluştururken değerlendirmeler probleme ilişkin olarak elde edilen bilgileri ve karar vericinin duygularını da yansıtmalıdır.

3) Aynı grupdaki diğer altögelere bağlı olarak yani altögenin algılanan önemine dayalı olarak, herbir altögeye sayısal değerler verilmesi, bir başka deyişle, değerlendirmelerin anlaşılmış sayılartla ifade edilmesi,

4) Hıyerarşinin altögelernin önçeliğini belirlemek için bu değerlerin kullanılması,

5) Karar alternatiflerini belirlemek için bu önçeliklerin birleştirilmesi, genel sonuç için daha önceki aşamada elde edilen değerlerin sentez edilmesi,

AYH, bir problemin çok kriterli öğelerinin önçelik durumunu bir hıyerarşi içerisinde belirlemeye ve temsil etmeye yarayan sistemmatik bir yöntemdir. AYH’nin problem çözme süreci bu çerçevede gerçekleşir. Bu yöntem bir problemin öğelerini temsil etmekte kullanılan sistemmatik bir yöntemdir. AYH bir problemi daha küçük parçalara ayırarak ve daha sonra sadece subjektif değerlendirmeleri ikili karşılaştırmalarla tabi tutarak her hıyerarşi için önçelikleri geliştirecek belli bir mantıksal süreç düzenlenmiş olur.

Probleem çözmede kullanılabilecek üç ilke bulunmaktadır. Bunlar ayırıştırma, karşılaştırmalar değerlendirme ve önçeliklerin sentezinin yapılmasınıdır. (Saaty, 1986: 841)

Ayrıştırma düzeyleri ölçümün temel bir bölümü oluşturur ve bu yüzden de genellikle farklı olmamalari, diğer bir deyişle belli bir “nitelik” ölçüsünden daha farklı olmamaları gerekir.
Karşılaşturma ilkesi ise ikinci düzeydeki öğelerin, birincı düzeydeki genel amaç karşısındaki göreli önemlerinin ikili karşılaştırmalarını yapmak için bir matrisin oluşturulmasını içerir. Ölçümle kullanılabacak bir ölçğin bulunmaması halinde ise bu değerlendirmeye problemi çözmekte olan bir kişi ya da grup tarafından yapılır.

Bundan sonra önceliklerin sentez edilmesi ilkesi uygulanır. Hiyerarşinin en alt düzeyinden elde edilen önceliklerden hareket edilerek problemin bütünü için ya da hiyerarşide en üst düzeyde yer alan genel kriter için öncelik belirlenir.

Saaty (1986: 844-847) AHY' in temelini teşkil eden 4 aksiyom tanımlanmıştır.

Aksiyom 2: Homojenlik: Homojenlik benzer öğelerin karşılaştırılması için gerekliyor.Örneğin bir kum tanesi ile portakalı büyüklüğü açısından karşılaştırmayız. Fark büyük olduğu zaman, bir başka deyişle karşılaştırılan öğeler homojen olmazsa zaman öğelerin kümelenmesi gerekir.

Aksiyom 3: Bağımsızlık: Tercihler ifade edildiği zaman, kriterler alternatiflerin özelliklerinden bağımsız olduğu varsayılır.

AHY' nin karar uygulamaları Hiyerarşi Tasarımı ve Değerlendirme olarak iki aşamada gerçekleştirilir.

HIYERARŞİ TASARIMI

Hiyerarşilerin tasarımı, problem alanı ile ilgili bilgi ve deneyim gerektirir. İki karar verici aynı probleme ilişkin iki ayrı tasarım geliştirilebilir, öte yandan iki karar verici probleme ilişkin aynı hiyerarşiyi geliştirebilir. Hiyerarşiler oluşturulan birçok hiyerarşisi tasarım yapıştırdığı hususları dikkate alınmalıdır. (Saaty, 1990:9)

- Problem mümkün olduğunca öğelerdeki değişime duyarlılığı kaybetmeden temsil edilmeli,
- Problemin çevresi dikkate alınmalı,
- Çözümke katkıda bulunacak nitelik ve katkıların belirlenmesi,
- Probleme ilişkili katılımcıların belirlenmesi.
ÇOK AMAÇLI KARAR VERMEDE BİR YAKLAŞIM: ANALİTİK HİYERARŞİ YÖNTEMI

Hiyeraşı tasarımını süreci aşağıdaki şekilde gösterilmektedir:

- Düzey ve Kavramların Belirlenmesi
- Kavramların Tanımlanması
- Soruların Formülasyonu

Hiyeraşının Değerlendirilmesi

Şekil 1. Hiyeraşı Tasarımı (Vargas, 1990: 3)

Ayrıntılı bir hiyeraşı tasarımını için belirlenmesi gereken noktalar şunlardır: (Saaty, 1994: 22)

1) Genel amacın belirlenmesi (Örneğin yapılmaya çalışılan şey, temel sorun gibi noktaların ortaya konulması),
2) Genel amacın altamaçlarının belirlenmesi,
3) Genel amacın altamaçlarını gerçekleştirmeye uyulması gereken kriterlerin belirlenmesi,
4) Herbir kriterin altkriterlerinin belirlenmesi (Burada kriter ve altkriterler parametrelerin değer aralıkları ya da yüksek, orta, düşük gibi sözsel ağırlıklar olarak belirlenebilir),
5) Konuya ilgili kişilerin veya grubun belirlenmesi,
6) Bu kişi ve grupların amaçlarının belirlenmesi,
7) Bu kişi ve grupların politikalarının belirlenmesi,
8) Sonuçların ya da alternatiflerin belirlenmesi,
9) En fazla tercih edilen sonucu veren kararan verilmesinin ve verilmemesinin getiriceği yarar ve maliyetlerin karşılaştırılması,
10) Marjinal değerler kullanılarak fayda/maliyet analizinin yapılması. (Burada dominant hiyerarşiller sözkonusu olduğundan en fazla yararı sağlayan alternatifin hangisi olduğunu, maliyetlerin sözkonusu olması halinde ise en fazla maliyeti verenin hangisi olduğunu ve risklerin sözkonusu olması durumunda da hangi alternatifin en fazla riske sahip olduğu belirlenir.)

Bir karar probleminde hiyerarşi tasarımına ilişkin bir örnek aşağıda verilmiştir: (Saaty, 1990: 14-15)

<table>
<thead>
<tr>
<th>EVİN SAĞLADIĞI MEMNUNİYET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>A EVI</td>
</tr>
</tbody>
</table>

Şekil 2. Problemin Ayırıştırlarak Hiyerarşik Yapısının Oluşturulması.
HİYERARŞİNİN DEĞERLENDİRİLMESİ

AHY’de ölçeğin belirlenmesi çok önemlidir. AHY’de ölçeğin belirlenmesi için önce bu ölçek için belirli bir sayı dizini alınır ve bu sayılar kullanılarak belirlenecek önceliklerin birbirleriyile nasıl birleştirileceğine karar verilir. Bir ölçek şu üç elemandan oluşur: Bir nesneler kümesi, bir sayılar kümesi ve nesnelerle sayılar arasındaki karşılıklı ilişkilerin belirlenmesi.

Saaty tarafından bu konuda kullanımlık üzere görel bir ölçek geliştirilmiştir. Tablo 1’de gösterilen bu ölçek AHY’nin temel ölçeğidir.
<table>
<thead>
<tr>
<th>Öнем Derecesi</th>
<th>Tanım</th>
<th>Açıklaması</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eşit önemli</td>
<td>Her iki faaliyet de amaca eşit katkısı bulunur</td>
</tr>
<tr>
<td>3</td>
<td>Orta önemli</td>
<td>Tercübe ve değerlendirilmeler sonucunda bir faaliyet diğerine göre biraz daha fazla tercih edilir.</td>
</tr>
<tr>
<td>5</td>
<td>Güçlü önemde</td>
<td>Tercübe ve değerlendirilmeler sonucunda bir faaliyet diğerine göre çok daha fazla tercih edilir.</td>
</tr>
<tr>
<td>7</td>
<td>Çok güçlü önemde</td>
<td>Bir faaliyet diğerine göre çok güçlü şekilde tercih edilir. Uygulamada üstünlüğü ispatlanmıştır.</td>
</tr>
<tr>
<td>9</td>
<td>Son derece önemi</td>
<td>Bir faaliyet diğerine göre mümkün olan en yüksek derecede tercih edilir.</td>
</tr>
<tr>
<td>2, 4, 6, 8</td>
<td>Yukarıdaki değerler arasındaki ara değerler</td>
<td>Bir değerlendirmeyi yapmatta sözler yetersiz kalmayorsa, sayısal değerlerin ortasındaki bir değer verilir.</td>
</tr>
</tbody>
</table>

Yukarıdaki sayılarn tersi

<table>
<thead>
<tr>
<th>Rasyonel sayilar</th>
<th>Ölçekten elde edilen oranlar</th>
<th>Matristen n adet sayı alınarak tutarlılığın elde edilmesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1-1.9</td>
<td>Önemi farklashamus faaliyetler</td>
<td>Öğeler birbirine yakınsa ve ayırı yapılamsıya kullanılır. 1.3 orta, 1.9 ise en üç değer demektir.</td>
</tr>
</tbody>
</table>

AHY’de bütün karar verme sürecinin ve hiyerarşisinin tutarlılık derecesi de hesaplanabilmektedir. Bu oran bütün karar verme sürecinin tutarlılık ölçüsünü de verir. Bu orana bakarak hiyerarşisinin geçerliliği hakkında bilgi edinmek mümkündür. AHY’nin sağladığı en önemli yararlardan biri, bu yöntemin ikili karşılaştırmaların tutarlılık derecesini ölçebilmesidir. Tutarlılık Oranı (TO) adı verilen bu ölçü, yöneticilerin ikili karşılaştırmalarındaki yanılış değerlendirmeleri tesbit edebilmelerine imkan verir. Bu imkan yalnızca dikkatsizce yapılan hataların azaltılabilmesini sağlamakla kalmaz, aynı zamanda yöneticilerin bir ya da daha fazla sayıdaki karşılaştırmasındaki hatalarını ya da yaptığı abartmalı değerlendirmeleri gösterir.
0,10 olan bir tutarlılık oranı (TO için kabul edilebilir üst sınırı) kabaca ifade etmek gerekirse, öğelerin tamamen rassal bir şekilde karşılaştırılmış olma olasılığının % 10 olduğunu ifade etmektedir. TO 0,10’dan daha büyükse karar vericiye karşılaştırmalarını tekrar gözden geçirilmesi tavsiye edilir. Bunun nedeni yöneticinin bazı değerlendirmelerinin çelişkili olmasıdır. (Partovi ve Hopton, 1994: 15)

Örnekteki ev satın almak isteyen ailenin bireylerinin ikinci düzey kriterlerine verdikleri önem dereceleri ikili karşılaştırmalar matrisi şeklinde aşağıdaki Tablo
Tablo 2.1. Düzey İçin İkili Karşılaştırmalar Matrisi

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Öncelik Vektörü</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>1/3</td>
<td>1/4</td>
<td>0,173</td>
</tr>
<tr>
<td>2</td>
<td>1/5</td>
<td>1</td>
<td>1/3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1/5</td>
<td>1/7</td>
<td>0,054</td>
</tr>
<tr>
<td>3</td>
<td>1/3</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>1/5</td>
<td>0,188</td>
</tr>
<tr>
<td>4</td>
<td>1/7</td>
<td>1/5</td>
<td>1/6</td>
<td>1</td>
<td>1/3</td>
<td>1/4</td>
<td>1/7</td>
<td>1/8</td>
<td>0,018</td>
</tr>
<tr>
<td>5</td>
<td>1/6</td>
<td>1/3</td>
<td>1/3</td>
<td>3</td>
<td>1</td>
<td>1/2</td>
<td>1/5</td>
<td>1/6</td>
<td>0,031</td>
</tr>
<tr>
<td>6</td>
<td>1/6</td>
<td>1/3</td>
<td>1/4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1/5</td>
<td>1/6</td>
<td>0,036</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>5</td>
<td>1/6</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1/2</td>
<td>0,167</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0,333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TO=0,169</td>
</tr>
</tbody>
</table>

Tablo 3. Karşılaştırma Matrisleri ve Öncelikleri

<table>
<thead>
<tr>
<th>Evin Büyükluğu</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Öncelik Vektörü</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>0,754</td>
</tr>
<tr>
<td>B</td>
<td>1/6</td>
<td>1</td>
<td>4</td>
<td>0,181</td>
</tr>
<tr>
<td>C</td>
<td>1/8</td>
<td>1/4</td>
<td>1</td>
<td>0,065</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TO=0,117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ulaşım Kolaylığı</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Öncelik Vektörü</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>7</td>
<td>1/5</td>
<td>0,233</td>
</tr>
<tr>
<td>B</td>
<td>1/7</td>
<td>1</td>
<td>1/8</td>
<td>0,005</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>0,713</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TO=0,213</td>
</tr>
<tr>
<td>Evin Çevre Koşulları</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>Öncelik Vektörü</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>0,745</td>
</tr>
<tr>
<td>B</td>
<td>1/8</td>
<td>1</td>
<td>1/4</td>
<td>0,065</td>
</tr>
<tr>
<td>C</td>
<td>1/6</td>
<td>4</td>
<td>1</td>
<td>0,181</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TO=0,117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evin Yaşı</th>
<th>A</th>
<th>B</th>
<th>B</th>
<th>Öncelik Vektörü</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,333</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,333</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TO=0,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bahçenin Özelliği</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Öncelik Vektörü</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>0,674</td>
</tr>
<tr>
<td>B</td>
<td>1/5</td>
<td>1</td>
<td>1/3</td>
<td>0,101</td>
</tr>
<tr>
<td>C</td>
<td>1/4</td>
<td>3</td>
<td>1</td>
<td>0,226</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TO=0,074</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evin Donanımı</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Öncelik Vektörü</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>0,747</td>
</tr>
<tr>
<td>B</td>
<td>1/8</td>
<td>1</td>
<td>1/5</td>
<td>0,060</td>
</tr>
<tr>
<td>C</td>
<td>1/6</td>
<td>5</td>
<td>1</td>
<td>0,193</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TO=0,170</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genel Durumu</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Öncelik Vektörü</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>0,200</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0,400</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0,400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TO=0,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finansman İmkani</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Öncelik Vektörü</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1/7</td>
<td>1/3</td>
<td>0,072</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>0,650</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>1/3</td>
<td>1</td>
<td>0,278</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TO=0,56</td>
</tr>
</tbody>
</table>
Öncelik vektörleri incelendiğinde evlere ilişkin olarak şu sonuçlar ortaya çıkmaktadır:

Bu değerlendirmede son aşama ise, bir önceki aşamada elde edilen önceliklerden hareket ederek genel amaç açısından önceliklerin belirlenmesidir. Burada her kritere bağlı olarak evde ilişkin öncelikleri bir matris şeklinde düzenleriz ve bu matrisin her sütununu, bu sütundaki kriterin önceliği ile çarpız ve bu çarpımları satılar boyunca toplarız. Böylece evlere ilişkin öncelikler vektörünü elde etmiş oluruz. Hesaplamalar sonucunda elde edilen öncelik değerleri aşağıdaki tabloda gösterilmiştir:

<table>
<thead>
<tr>
<th></th>
<th>1 (0,173)</th>
<th>2 (0,054)</th>
<th>3 (0,188)</th>
<th>4 (0,018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,754</td>
<td>0,233</td>
<td>0,754</td>
<td>0,333</td>
</tr>
<tr>
<td>B</td>
<td>0,181</td>
<td>0,055</td>
<td>0,065</td>
<td>0,333</td>
</tr>
<tr>
<td>C</td>
<td>0,065</td>
<td>0,713</td>
<td>0,181</td>
<td>0,333</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5 (0,031)</th>
<th>6 (0,036)</th>
<th>7 (0,167)</th>
<th>8 (0,333)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,674</td>
<td>0,747</td>
<td>0,200</td>
<td>0,072</td>
</tr>
<tr>
<td>B</td>
<td>0,101</td>
<td>0,060</td>
<td>0,400</td>
<td>0,650</td>
</tr>
<tr>
<td>C</td>
<td>0,226</td>
<td>0,193</td>
<td>0,400</td>
<td>0,278</td>
</tr>
</tbody>
</table>

Tablo 4. Kriterler ve Problemin Tümü İcin Öncelikler
ÇOK AMAÇLI KARAR VERMEDE BİR YAKLAŞIM: ANALITİK HİYERARŞİ YÖNTEMİ

Bu örnekte finansman açısından en kötü durumda olan A evinin, beklenenin tersine, en yüksek önceliğe sahip olduğu görülmektedir. Aile bireyleri kendilerine en yüksek tatmini sağlayacak olan A evini tercih edeceklerdir.

AHY’nin çok kriterli karar verme durumlarında sağladığı yararları şöyle sıralayabiliriz: (Narasimhan, 1983: 30)

1) Büyük ölçüde subjektif bir karar sürecini biçimsel ve sistematik hale getirir ve böylece “doğru” kararların verilmesini sağlar.

2) Yönetim bu yöntemin kullanılmasının bir yan sonucu olarak değerlendirmeye kriterlerinin zimni ağırlıklarına ilişkin bilgiler elde eder.

3) Bilgisayarların kullanılması sonuçlara ilişkin duyarsızlık analizlerinin yapılamasını mümkün kılard.

AHY’nin kullanılamasıyla sağlanan bir diğer yarar da bu yöntemin yöneticiler arasındaki iletişimin iyileşmesine katkıda bulunması ve böylece karar veren grubun üyelerleri arasında uzlaşma ve karşılıklı anlaşmanın gelişmesine katkıda bulunmasıdır. Bu yolla yöneticilerin verilen kararı benimseyerek uygulamaları kolaylaştır.

SONUÇ

AHY’de kullanılan hiyerarşik yapı duruma göre değiştirilebilmekte, bazı kriterlerin çıkarılarak yeni kriterlerin eklenmesine, yeni düzeylerin oluşturulması mümkün olmaktadır. Yöntemin bu esneklik özelliği kullandığı etkinliğini artırmaktadır. AHY, Expert Choice yazılım programıyla değişik alanlarda kullanılabilmektedir.
KAYNAKLAR

