Inequalities for \(\log \) – convex functions via three times differentiability

Merve Avcı Ardıç \(^*\), M. Emin Özdemir \(^2\)

\(^1\) Adıyaman University, Faculty of Science and Arts, Department of Mathematics, Adıyaman, Turkey,
merveavci@gmail.com

\(^2\) Uludağ University, Education Faculty, Bursa, Turkey,
eminozdemir@uludag.edu.tr

*Corresponding Author

Recieved: 28th October 2016
Accepted: 30th December 2016
DOI:10.18466/cbayarfbe.319873

Abstract

In this paper, some new integral inequalities like Hermite-Hadamard type for functions whose third derivatives absolute value are \(\log \) – convex are established. Some applications to quadrature formula for midpoint error estimate are given.

Keywords: Convexity, \(\log \) – convex functions, Hermite-Hadamard inequality, Hölder integral inequality, Power-mean integral inequality

1 Introduction

We shall recall the definitions of convex functions and \(\log \) – convex functions:

Let \(I \) be an interval in \(\mathbb{R} \). Then \(f: I \rightarrow \mathbb{R} \) is said to be convex if for all \(x, y \in I \) and all \(\alpha \in [0,1] \),

\[
f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y)
\]

holds. If (1.1) is strict for all \(x \neq y \) and \(\alpha \in (0,1) \), then \(f \) is said to be strictly convex. If the inequality in (1.1) is reversed, then \(f \) is said to be concave. If it is strict for all \(x \neq y \) and \(\alpha \in (0,1) \), then \(f \) is said to be strictly concave.

A function is called \(\log \) – convex or multiplicatively convex on a real interval \(I = [a,b] \), if \(\log f \) is convex, or, equivalently if for all \(x, y \in I \) and all \(\alpha \in [0,1] \),

\[
f(\alpha x + (1-\alpha)y) \leq f(x)^\alpha \cdot f(y)^{1-\alpha}
\]

(1.2)

It is said to be log-concave if the inequality in (1.2) is reversed. For some results for \(\log \) – convex functions see [1,2,3,4,5,6,7].

The following inequality is called Hermite-Hadamard inequality for convex functions:

Let \(f: I \rightarrow \mathbb{R} \) be a convex function on the interval \(I \) of real numbers and \(a, b \in I \) with \(a < b \). Then double inequality

\[
f \left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_a^b f(x)dx \leq \frac{1}{2} \left(f(a) + f(b) \right)
\]

holds.

The main purpose of this paper is to obtain some new integral inequalities like Hermite-Hadamard type for functions whose third derivatives absolute value are \(\log \) – convex.

In order to prove our main results for \(\log \) – convex functions we need the following Lemma from [8]:

Lemma 1.1. Let \(f: I \subset \mathbb{R} \rightarrow \mathbb{R} \) be a three times differentiable mapping on \(I^* \) (the interior of \(I \)) and \(a, b \in I^* \) with \(a < b \). If \(f^{(3)} \in L_1[a,b] \), then

\[
\frac{1}{b-a} \int_a^b f(x)dx = \frac{1}{b-a} \int_a^b \left[f^{(3)}(t) \right] dt = \frac{1}{96} \left[\int_a^b f^{(3)} \left(\frac{t}{2} \right) dt \right]
\]

\[
= \frac{(b-a)^3}{96} \left[\int_a^b f^{(3)} \left(\frac{t}{2} \right) dt \right]
\]

In the sequel of paper, we deduce

\[
\text{If } p > 1, \text{ then } L_p[a,b] = \left\{ f: \left(\int_a^b |f(x)|^p dx \right)^{1/p} < \infty \right\}
\]
where \([a, b]\) is a closed interval.

2 Inequalities for log-convex functions

We shall start the following result:

Theorem 2.1. Let \(f : I \to [0, \infty) \), be a three times differentiable mapping on \(I \) such that \(f^{-} \in L_{1}[a, b] \) where \(a, b \in I \) with \(a < b \). If \(f^{-} \) is log-convex on \([a, b]\), then the following inequality holds:

\[
\left| \frac{1}{b-a} \int_{a}^{b} f(x)dx - f\left(\frac{a+b}{2} \right) - \frac{(b-a)^2}{24} f^{-}\left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^3}{96} \int_{0}^{1} \left| f^{-}\left(\frac{1}{2} + t a + \frac{2-t}{2} b \right) - f^{-}\left(\frac{1}{2} - t a + \frac{2+t}{2} b \right) \right| dt
\]

\[
+ \int_{0}^{1} \left| f^{-}\left(\frac{t}{2} a + \frac{2-t}{2} b \right) \right| dt
\]

\[
\leq \frac{(b-a)^3}{96} \left\{ \int_{0}^{1} \left| f^{-}\left(\frac{1}{2} + t a + \frac{2-t}{2} b \right) - f^{-}\left(\frac{1}{2} - t a + \frac{2+t}{2} b \right) \right| dt \right\} + \int_{0}^{1} \left| f^{-}\left(\frac{t}{2} a + \frac{2-t}{2} b \right) \right| dt
\]

The proof is completed by making use of the necessary computation.

Corollary 2.1. Let \(\mu_{K}, \mu_{M}, K \) and \(M \) be defined as in Theorem 2.1. If we choose \(f\left(\frac{a+b}{2} \right) = 0 \) in Theorem 2.1, we obtain the following inequality:

\[
\left| \frac{1}{b-a} \int_{a}^{b} f(x)dx - f\left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^3}{96} \left\{ \int_{0}^{1} \left| f^{-}\left(\frac{1}{2} + t a + \frac{2-t}{2} b \right) - f^{-}\left(\frac{1}{2} - t a + \frac{2+t}{2} b \right) \right| dt \right\} + \int_{0}^{1} \left| f^{-}\left(\frac{t}{2} a + \frac{2-t}{2} b \right) \right| dt
\]

\[
\leq \frac{(b-a)^3}{96} \left\{ \int_{0}^{1} \left| f^{-}\left(\frac{1}{2} + t a + \frac{2-t}{2} b \right) - f^{-}\left(\frac{1}{2} - t a + \frac{2+t}{2} b \right) \right| dt \right\} + \int_{0}^{1} \left| f^{-}\left(\frac{t}{2} a + \frac{2-t}{2} b \right) \right| dt
\]

The proof is completed by making use of the necessary computation.

Theorem 2.2. Let \(f : I \to [0, \infty) \), be a three times differentiable mapping on \(I \) such that \(f^{-} \in L_{1}[a, b] \) where \(a, b \in I \) with \(a < b \). If \(f^{-} \) is log-convex on \([a, b]\), then the following inequality holds for some fixed \(q > 1 \):

\[
\left| \frac{1}{b-a} \int_{a}^{b} f(x)dx - f\left(\frac{a+b}{2} \right) - \frac{(b-a)^2}{24} f^{-}\left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^3}{96} \left\{ \int_{0}^{1} \left| f^{-}\left(\frac{1}{2} + t a + \frac{2-t}{2} b \right) - f^{-}\left(\frac{1}{2} - t a + \frac{2+t}{2} b \right) \right| dt \right\} + \int_{0}^{1} \left| f^{-}\left(\frac{t}{2} a + \frac{2-t}{2} b \right) \right| dt
\]

where \(K \) and \(M \) are as in Theorem 2.1. and
\[\frac{1}{p} + \frac{1}{q} = 1. \]

Proof. From Lemma 1.1 and using the Hölder integral inequality, we obtain

\[
\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - f \left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^2}{24} \left| \frac{1}{p} \int_{a}^{b} \left(f''(a) \right)^{\frac{q}{p}} \, dx \right|^{\frac{1}{q}}.
\]

Since \(|f''|\) is log-convex on \([a, b]\) we can say \(|f''|^{\frac{q}{p}}\) is also log-convex on \([a, b]\). If we use the log-convexity of \(|f''|^{\frac{q}{p}}\) above, we can write

\[
\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - f \left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^3}{96} \left\{ \left(\int_{a}^{b} f''(a) \, dx \right)^{\frac{1}{p}} \left(\int_{a}^{b} f''(b) \, dx \right)^{\frac{1}{q}} \right\}^{\frac{1}{q}}.
\]

We have

\[
\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - f \left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^3}{96} \left\{ \left(\int_{a}^{b} f''(a) \, dx \right)^{\frac{1}{p}} \left(\int_{a}^{b} f''(b) \, dx \right)^{\frac{1}{q}} \right\}^{\frac{1}{q}}.
\]

Thus, we obtain the following inequality

\[
\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - f \left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^2}{96} \left\{ \frac{1}{q} \left| \int_{a}^{b} f''(a) \, dx \right|^{\frac{q}{p}} + \left| \int_{a}^{b} f''(b) \, dx \right|^{\frac{q}{p}} \right\}^{\frac{1}{q}}.
\]

Theorem 2.2. Let \(K \) and \(M \) be defined as in Theorem 2.2. If we choose \(f' \left(\frac{a+b}{2} \right) = 0 \) in

\[
\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - f \left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^2}{96} \left\{ \frac{1}{q} \left| \int_{a}^{b} f''(a) \, dx \right|^{\frac{q}{p}} + \left| \int_{a}^{b} f''(b) \, dx \right|^{\frac{q}{p}} \right\}^{\frac{1}{q}}.
\]
\[
\begin{align*}
\leq \frac{(b-a)^3}{96} & \left\{ \int_{a}^{b} f'' \left(\frac{t}{2} \right) \, dt \right\}^{1/2} \left\{ \int_{a}^{b} f'' \left(\frac{b-t}{2} \right) \, dt \right\}^{1/2} \\
+ \left(\int_{a}^{b} f'' \left(\frac{t}{2} \right) \, dt \right)^{1/2} \left\{ \int_{a}^{b} f'' \left(\frac{b-t}{2} \right) \, dt \right\}^{1/2} \\
\leq & \left(\int_{a}^{b} f'' \left(\frac{t}{2} \right) \, dt \right)^{1/2} \left\{ \int_{a}^{b} f'' \left(\frac{b-t}{2} \right) \, dt \right\}^{1/2} \\
+ & \left(\int_{a}^{b} f'' \left(\frac{t}{2} \right) \, dt \right)^{1/2} \left\{ \int_{a}^{b} f'' \left(\frac{b-t}{2} \right) \, dt \right\}^{1/2}
\end{align*}
\]

The proof is completed by making use of the necessary computation.

Corollary 2.3. Let \(\mu_{K,q} \), \(\mu_{M,q} \) be defined as in Theorem 2.3 and \(K, M \) be defined as in Theorem 2.1. If we choose \(f'' \left(\frac{a+b}{2} \right) = 0 \) in Theorem 2.3 , we obtain the following inequality

\[
\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - f \left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^3}{96} \left\{ \int_{a}^{b} f'' \left(\frac{t}{2} \right) \, dt \right\}^{1/2} \left\{ \int_{a}^{b} f'' \left(\frac{b-t}{2} \right) \, dt \right\}^{1/2}
\]

\[
\leq \frac{(b-a)^3}{96} \left(\frac{1}{4} \right) \left\{ \left| f'' \left(\frac{b}{2} \right) \right| \mu_{K,q}^{-1} + \left| f'' \left(\frac{a}{2} \right) \right| \mu_{M,q}^{-1} \right\}^{1/2}
\]

Corollary 2.4. From Corollaries 2.1-2.3, we have

\[
\frac{1}{b-a} \int_{a}^{b} f(x) \, dx - f \left(\frac{a+b}{2} \right) \leq \min \left\{ X_1, X_2, X_3 \right\}
\]

where

\[
X_1 = \frac{(b-a)^3}{96} \left\{ \left| f'' \left(\frac{b}{2} \right) \right| \frac{2 K^2 \left(\ln K - 6 \right)}{\left(\ln M \right)^2} + \frac{48 K^2 \left(\ln K \right)^2}{\left(\ln K \right)^4} \\
+ \frac{96}{\left(\ln K \right)^3} \right\}^{1/2}
\]

\[
- \frac{M^2 \left(\ln M - 6 \right)}{\left(\ln M \right)^2} + \frac{96}{\left(\ln M \right)^3} \right\}^{1/2}
\]

\[
X_2 = \frac{(b-a)^3}{96} \left\{ \left| f'' \left(\frac{b}{2} \right) \right| \frac{2 K^2 \left(\ln K - 6 \right)}{\left(\ln M \right)^2} + \frac{48 K^2 \left(\ln K \right)^2}{\left(\ln K \right)^4} \\
+ \frac{M^2 \left(\ln M - 6 \right)}{\left(\ln M \right)^2} + \frac{96}{\left(\ln M \right)^3} \right\}^{1/2}
\]

\[
X_3 = \frac{(b-a)^3}{96} \left\{ \left| f'' \left(\frac{b}{2} \right) \right| \frac{2 K^2 \left(\ln K - 6 \right)}{\left(\ln M \right)^2} + \frac{48 K^2 \left(\ln K \right)^2}{\left(\ln K \right)^4} \\
+ \frac{M^2 \left(\ln M - 6 \right)}{\left(\ln M \right)^2} + \frac{96}{\left(\ln M \right)^3} \right\}^{1/2}
\]

and \(K, M \) are as in Theorem 2.1.

Remark 2.1. In Theorem 2.3 and Corollary 2.3, if we choose \(q = 1 \), we obtain Theorem 2.1 and Corollary 2.1 respectively.

3 Applications to midpoint formula

We give some error estimates to midpoint formula by using the results of Section 2. Let \(d \) be a division \(a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b \) of the interval \([a,b] \) and consider the formula

\[
\int_{a}^{b} f(x) \, dx = M(f,d) + E(f,d)
\]

where \(M(f,d) = \sum_{i=0}^{n-1} f \left(\frac{x_i + x_{i+1}}{2} \right) (x_{i+1} - x_i) \) for the midpoint version and \(E(f,d) \) denotes the associated approximation error.

Proposition 3.1. Let \(f : I \to [0, \infty) \) be a three times differentiable mapping on \(I \) with \(a,b \in I \)
such that \(a < b \). If \(f^{-} \) is log−convex function with \(f^{-} \in L_{1}[a,b] \), then for every division \(d \) of \([a,b]\), the midpoint error estimate satisfies
\[
|E(f,d)| \leq \left(\frac{1}{3} \right) \frac{1}{96} \sum_{i=0}^{n-1} (x_{i+1} - x_i)^{\frac{1}{2}}
\]
where
\[
\mu_1 = \frac{2 K_2^2 (\ln K_1 - 6)}{(\ln K_1)^2} + \frac{48 K_2^2 (\ln K_1 - 2)}{(\ln K_1)^4} + \frac{96}{(\ln K_1)^4},
\]
\[
\mu_2 = \frac{2 M_2^2 (\ln M_1 - 6)}{(\ln M_1)^2} + \frac{48 M_2^2 (\ln M_1 - 2)}{(\ln M_1)^4} + \frac{96}{(\ln M_1)^4}
\]
and
\[
K_1 = \frac{\left(f^{-}(x_i) \right)}{\left(f^{-}(x_{i+1}) \right)}, M_1 = \frac{\left(f^{-}(x_{i+1}) \right)}{\left(f^{-}(x_i) \right)}.
\]
Also \(K_1, M_1 \neq 1 \).

Proof. By applying Corollary 2.1 on the subintervals \([x_i, x_{i+1}]\), \(i = 0, 1, \ldots, n - 1\) of the division \(d \) we have
\[
\left| \int_{x_{i+1}}^{x_i} f(x)dx - f\left(\frac{x_i + x_{i+1}}{2} \right) \right| \leq \frac{(x_{i+1} - x_i)^{\frac{1}{2}}}{96} \left| f^{-}(x_{i+1}) \right| \mu_1 + \left| f^{-}(x_i) \right| \mu_2.
\]
By summing over \(i \) from 0 to \(n - 1 \), we can write
\[
\left| \int_a^b f(x)dx - M(f,d) \right| \leq \frac{1}{96} \sum_{i=0}^{n-1} (x_{i+1} - x_i)^{\frac{1}{2}} \left| f^{-}(x_{i+1}) \right| \mu_1 + \left| f^{-}(x_i) \right| \mu_2.
\]
which completes the proof.

Proposition 3.2. Let \(f : I \to [0, \infty) \) be a three times differentiable mapping on \(I' \) with \(a, b \in I' \) such that \(a < b \). If \(f^{-} \) is log−convex function with \(f^{-} \in L_{1}[a,b] \) for some fixed \(q > 1 \), then for every division \(d \) of \([a,b]\), the midpoint error estimate satisfies
\[
|E(f,d)| \leq \left(\frac{1}{3} \right) \frac{1}{96} \sum_{i=0}^{n-1} (x_{i+1} - x_i)^{\frac{1}{2}}
\]
\[
\times \left\{\left. f^{-}(x_{i+1}) \right| \mu_1 \right\}^\frac{1}{q} + \left| f^{-}(x_i) \right| \mu_2 \right\}^\frac{1}{q} \right\}
\]
where
\[
\mu_{1,q} = \frac{2 K_2^2 (q \ln K_1 - 6)}{(q \ln K_1)^2} + \frac{48 K_2^2 (q \ln K_1 - 2)}{(q \ln K_1)^4} + \frac{96}{(q \ln K_1)^4},
\]
\[
\mu_{2,q} = \frac{2 M_2^2 (q \ln M_1 - 6)}{(q \ln M_1)^2} + \frac{48 M_2^2 (q \ln M_1 - 2)}{(q \ln M_1)^4} + \frac{96}{(q \ln M_1)^4}
\]
and \(K_1, M_1 \) are as defined in Proposition 3.1.

Proof. The proof can be maintained by using Corollary 2.3 like Proposition 3.1.
4 References

