The Effects of Digital Storytelling on the Students’ Project Based Virtual Learning Qualifications

Fatih BALAMAN
Mustafa Kemal University, Faculty of Education, Department of Computer and Instruction Technologies Education, Hatay, Turkey

Abstract

The aim of this study is to examine the effect of Digital Storytelling Method on the Vocational School students’ project based virtual learning qualifications. For this purpose, it was studied with 44 students of experimental group in Mustafa Kemal University Kırıkhan Vocational School and free project was performed with the study of experimental group in real occasion via Digital Storytelling Method in 2015-2016 autumn terms. The study was modeled as quasi-experimental with pretest and posttest control groups. Descriptive statistics, Independent samples t Test, Paired Sample t Test were used in the analysis of the data. At the end of practicing duration along 12 weeks, it was reached the conclusion that Digital Storytelling method increased the students of project based virtual learning qualifications.

Keywords: Digital Storytelling, Project Based Virtual Learning, Education, Story, Teaching.

Dijital Öykülemenin Öğrencilerin Proje Tabanlı Sanal Öğrenme Yeterliklerine Etkileri

Öz

To cite this article:
1. Introduction

Storytelling is used as an effective teaching tool in almost every aspect of education from past to present because of its amusing aspects (Turgut & Kışla, 2015; Yüzer & Kılınç, 2015; Tatlı & Aksoy, 2015). Storytelling which was used only verbally in the past has developed in time and taken modern shape in today.

Digital Storytelling which started with television has been transferred to virtual environment thanks to information and communication technologies. Thus, cultural interaction between the individuals with different lifestyles in remote geographical regions has been made, cooperation has been achieved, and more advanced information sharing has become possible (İncelli, 2005). In technological age, the education system was also influenced by the changes stemming from digital revolution. New approaches based on technology have become more popular. Digital Storytelling is one of the approaches which can meet the needs of the system of education since that the students can construct information and they are entrepreneur and active (Ayvaz Tunç & Karadağ, 2013).

Digital Storytelling is the modern version of traditional storytelling. Digital Storytelling is the use and express of interactive media components such as picture, audio and text in a certain harmony (Razmia, Pouralib & Nozad, 2014; Ming et al., 2014). According to Kocaman Karoğlu (2015), Digital Storytelling is an up to date method that is often used in education, caused by the use of traditional storytelling in conjunction with multimedia elements. Many multimedia elements are utilized in the process of creating stories in which Digital Storytelling was used (Yüzer & Kılınç, 2015; Kotluk & Kocakaya, 2015). This situation allows for more effective learning environments. According to Hathorn (2005), Klaebe, Foth, Burgess & Bilandzic (2007) Digital Storytelling is bringing together the skills such as language, literature and art in virtual environment with the use of technology and presenting the story in virtual environment. Digital Storytelling which has come out in recent years as a strong learning-teaching tool (Robin, 2008; Campbell, 2012) can be used at different education levels; however, it is new for higher education and in the process of developing (McLellan, 2006).

The most important factor is interaction in all of digital stories. Learners discover the information by using technology such as computer, the internet, mobile phone and build new knowledge on previous knowledge that they have learned (Niemi, et al., 2014). Digital Storytelling can address many subject areas. Digital Storytelling which is especially used in social and linguistic matters effectively is one of the numerous communication chances offered by technology (Bull & Kajder, 2004). This method facilitates the understanding of complex situations people encountered in social life since that it involves complex processes involving storytelling (Couldry, 2008).

Digital stories also contribute to the development of certain qualities of students. These qualities can include students’ creative thinking, communication, writing original text, problem solving, imagination, use of social and linguistic aspects (McLellan & Wyatt, 2006; Turgut & Kışla, 2015; Bedir Erişti, 2016).

In Digital Storytelling, students are required to know how to use technology for the plots they are going to write and make plans for the activities that will be put into practice during the project (Kobayashi, 2012). A work schedule must be created before starting to prepare the digital story, which is composed of many steps and requires a certain preparation process, and the task sharing should be done before working as group in storytelling. Thus, each group member has less workload and more professional products are created.

Digital Storytelling which also allows people to express their own feelings verbally (Lowenthal & Dunlap, 2010) provides the transfer of emotions and thoughts to the target group (Willis & Sawyer, 2011). Digital stories can be thought of not only as a video but also as a study reflecting the cultures of the creators at the same time (Burgess, 2006).
Digital stories are different from TV series or cartoons (Meadows, 2003). Digital stories prepared with the educational purpose are used not only to convey feelings and thoughts in the story to the audiences but also in the teaching of a subject. Efficiency can be further increased by adding various background music to digital stories (Sylvestre & Greenidge, 2009) which is a powerful learning and teaching tool (Psomos & Kordaki, 2012). In order to reach the aim, the running time of the created stories is also important. According to Menezes (2004), the ideal running time of stories which will be created in the manner not to bother audiences to keep their attention and interest alive should be between 2 minutes and 10 minutes. The running time of story can differ according to some factors such as age group, readiness level of target audience.

In the creation of digital stories, it is a matter of active participation of student in the process. In this case, the role of teacher has also differentiated. The role of teacher in developing digital story with educational purpose is to guide students in terms of idea and perception, not physically (Sanz, 2015).

Digital storytelling is considered as one of the contemporary methods of present education concept due to the nature of being project-based and student-centred (Yürük & Atıcı, 2017).

Project means thinking, using imagination, fictionalising in order to create a product. From the preparation phases of project which technology is effectively used, research and investigation phases have attracted students’ attention (Öztürk & Çivelekoğlu, 2010).

Project-Based Learning (PBL) is an understanding that accepts project as infrastructure factor, grounds on project (Erdem, 2002). While project management provides construction of information, it can also contribute to peer education (Aslantaş, 2008). Thus, project method which conducting to seek a solution for certain problems has also brought individual the ability to work together with the group under natural conditions (Çıbık, 2006).

Nowadays, teaching methods used to reach the information aim individual’s learning by doing and experiencing, learning to learn. In PBL method, one of the methods to accomplish these purposes (Oral, 2011) can bring students target behaviours related to cognitive, affective and kinaesthetic fields (Sönmez, 2010). In the bringing of target behaviours, students can act in group or individually (Oral, 2011).

PBL is a teaching method that is student-centred, enables students to prepare projects by providing interdisciplinary connection, and thus prepares students for real life (Kalaycı, 2008). In Project-Based Learning (PBL) in which teacher is a guide, it has been expected that student will explore the ways to reach the information, and can find a solution for the problems that s/he can encounter in real life.

Nowadays, using some competences of individuals such as thinking, researching and self-learning has been encouraged and given importance (Demirhan & Demirel, 2003). In this age in which information continuously changes and renews, the role of educator is not to convey knowledge but to enable the individual to access the information and to guide it for this purpose. Hence, in this day and age it has been known that student becomes more successful by using teaching methods which student is at the centre of information and active (Saracaloğlu, Özyılmaz Akamca & Yeşildere, 2006).

As compared to Traditional Learning, PBL method has shortened learning process and enabled students to utilize from much more sources (Yılmaz & Tuncer, 2013). Important changes have recently drawn attention in curricula carried out in our country with the effect of change in education policy. Accordingly it has been seen that curricula which are student-centred, include self-learning and aim to make individual ready for life after education have been applied (Yılmaz & Tuncer, 2013).

Use of Information Technologies has been increasingly gaining importance for today’s information society day by day (Chu, Tse & Chow, 2011). In many fields of our lives there has been a transition into the Internet, and education is also one of these fields. Individuals, institutions, states have carried out their
transactions through web (Polat & Atıcı, 2010). In this context, access to scientific sources over web has become widespread. In this age, the Internet which has taken libraries’ places to gain information has been regarded as an important information gathering tool in the learning process thanks to PBL method (Yılmaz & Tuncer, 2013). In the projects which will be prepared in both virtual and real environment, the Internet has been accepted as a guide in many phases of preparing project. PBL has offered student more opportunity by removing time and space limitation in face to face learning in the class. While face to face learning environment cannot reveal concrete learning product, students can obtain their own learning outputs through PBL. In the gaining of these outputs, information and communication technologies have been mostly used as well (Heo, Lim & Kim, 2010).

Every individual has the ability to think and investigate. The role of educator is to use methods and techniques that will reveal these abilities of student (Polat & Atıcı, 2010). Students should be encouraged on the subject of critical and creative thinking and given an opportunity that will disclose their abilities in this subject (Chin & Chia, 2006). The purpose in the applications carried out with the project is to guide students to learn themselves and work together with group members (Morgil, Seyhan & Seçken, 2009; Şimşek Öztürk, 2008). In this context, PBL environment can provide students opportunity to reveal their abilities and express themselves.

PBL has been assessed as synthesis of models of Re-constructionism, Project Method, Discovery Learning and Learning with Group (Korkmaz & Kaptan, 2002). PBL of which foundations have been based on the philosophies of Progressivism and Re-constructionism (Ayan, 2012) has set the ground for self-learning and associating school with life (Serttürk, 2008). In project-based learning which appear with Structuralist Teaching Approach, emerges as application area of learning by doing and experiencing (Demir, 2013), the role of teacher is to use methods and techniques that will enable student to learn by guiding student instead of conveying the information (Önen, Mertoğlu, Saka & Gürdal, 2010).

Learning-teaching methods used are among the most important factors affecting students’ school success (Korkmaz & Kaptan, 2002). PBL one of the innovative learning approaches of the century particularly with the aspect of use of technology (Bell, 2010) has enabled students to reveal their abilities best (Kaldi, Filippatou & Govaris, 2011).

PBL has been preferred more in higher education than the other teaching stages. Besides, spread of use of information technologies in recent years has put forth that PBL can be also carried out within the scope of e-learning (Hou, Chang & Sung, 2007). Integrating technology with PBL, which provides student opportunity for active participation and group action (Yılmaz, 2012), has great importance for student in learning, planning and to put forward his/her own products (ChanLin, 2008).

The aim of the study is to analyse the effects of Digital Storytelling Method on Vocational School students’ project-based virtual learning competences.

2. Method

2.1. Research model

Research was modelled as quasi-experimental with pre-test and post-test control groups. Project-Based Virtual Learning Competence Scale was applied to experimental and control groups as pre-test before the study and as post-test after the study. In experimental studies, the effect of independent variables such as tool, method on dependent variables is generally tried to be determined (Büyüköztürk, Çakmak, Akgün, Karadeniz & Demirel, 2008). Quasi-experimental methods are intensively used in educational researches. Classes are determined randomly as experimental and control groups in the situations that central education is implemented and the intervention of researcher in random assignment of classes is not possible as in our country (Çepni, 2012).
2.2. Study group

Study group of the research consists of 73 students studying at Mustafa Kemal University Kırıkhan Vocational School in the fall semester of 2015-2016 academic years. Experimental group comprises of 44 students studying at the 1st and 2nd grade of Computer-Aided Design and Animation Programme of the school, while control group consists of 29 students at the 2nd grade of Internet and Web Technologies programme.

It was provided that experimental group prepared a project in digital environment by using storytelling, whereas control group did a project independently in real environment. The application process took 12 weeks.

2.2.1. The processes carried out with experimental group during the application process.

A project-based application was carried out by using Digital Storytelling method with the students at experimental group. The phases of Digital Storytelling were carried out briefly as follows:

a) Determining the plots of digital stories: The plots of digital stories are composed of the units in the 4th grade science course book for the first grade students in the high school and the 4th grade traffic safety course book units for the 2nd grade students. In choosing these textbooks, it has been influential that the subjects of Science and Traffic Safety are appropriate to create a digital story. Moreover, it has been thought that digital videos of the units of textbooks can be also used as teaching material for the primary school students. For this reason, in the preparation phase of digital videos it was paid attention that scenario, manner of telling and characters of the story are convenient for the students at 3rd and 4th grade.

b) Building written scenario: Every student or student group got information about the plot of digital story by analysing textbooks and searching in the internet. Then the groups having information on plot wrote their stories. In this phase, it was given attention that narration is composed of narrative manner by using extreme characters, not conveying mere information.

c) Sectioning the scenario: In this phase, the written scenario was sectioned. The purpose of sectioning was that pictures would be drawn for each section and each section would represent a stage in the digital environment.

d) Making drawings: The pictures which would represent the related section were drawn on A4 sheet and the drawings were coloured for each section created in the scenario.

e) Transfer of the drawings into the virtual environment: The drawings on the sheet in other words in the real environment were transferred into the virtual environment by converting into .jpg format through scanner. In this phase, it should be taken into consideration that each picture will be in order according to the sections in the scenario.

f) Making videos: The pictures in order were added to Photo Story 3 software and the scenario text which would represent the related picture was dubbed through microphone for each picture. In addition, the name of lesson and unit were given by adding home page to the start of video. In the phase of making a video, low rise background music was also preferably added to the background.

At the beginning of the process, the students of experimental group were informed about the study to be carried out and application calendar was formed. Informative seminars upon Digital Storytelling and Photo Story 3 software through which they would create these digital stories were given to the students of experimental group. Photo Story 3 software is quite simple in terms of usage and a software that does not require special talent. In fact, it has been thought that students would not have difficulty to use the software because of studying at the computer programme.
Table 1.

Activities carried out with experimental group during application

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Activities</th>
</tr>
</thead>
</table>
| 1\(^{st}\) week | - Briefing students about Digital Storytelling
 - Determining the plots of Digital Stories |
| 2\(^{nd}\) week | - Grouping students
 - Division of subjects to the groups |
| 3\(^{rd}\) - 4\(^{th}\) week | - Building of stories’ scenario and setting them down in black and white as .doc document |
| 5\(^{th}\) week | - Discussing the written scenarios in the class and organizing the scenarios |
| 6\(^{th}\) - 7\(^{th}\) - 8\(^{th}\) week | - Sectioning the written scenario and making drawings that would narrate each section
 (carrying out drawings actions with paper-and-pencil, not in the virtual environment)
 - Colouring the drawings |
| 9\(^{th}\) week | - Converting the drawings into .jpg format by scanning
 - Adding the drawings which were transferred into the virtual environment to Photo Story 3 software |
| 10\(^{th}\) week | - Dubbing the written scenarios through microphone by correlating with the related drawings |
| 11\(^{th}\) - 12\(^{th}\) week | - Assessing the studies by discussing, revising them.
 - Putting into final form by completing the studies |

Figure 1. The pictures of digital story about “Magnets’ Pulling Power” (Sample pictures)
Figure 2. The pictures of digital story about “Microscope and Microscopic Creatures” (Sample pictures).
2.2.2. The processes carried out with control group during the application process.

Students of control group studied in the matter of displaying an image obtained from camera as online on a tablet computer or a smart phone that Android operation system is installed. For this purpose, an image that a camera attached on any device could be displayed wirelessly and streamed on a screen that Android operation system was installed. It was thought that the application could be convenient for the curriculum and purpose of the Internet and Web Technologies programme. Students used shelfware with the aim of transfer of image.

While the study was being carried out, the phases as follows was pursued:

a) Providing communications for these two devices by establishing wireless link between the camera that took the image and smart phone or tablet computer,

b) Introducing the tablet computer or the smart phone to the camera through the related software,

c) Transferring the camera image into the smart phone or tablet computer.

2.3. Data collection tool

Project-Based Virtual Learning Competence Scale which was developed by Yılmaz & Tuncer (2013) and which of reliability co-efficient is 0.86 was used. The scale was formed in 5 factors. These factors were determined as *competence of working with the project group* (α=0.83), *competence of the project execution* (α=0.77), *competence of finalising the project* (α=0.58), *competence of introduction to the project* (α=0.71), *competence of self control of the project* (α=0.61).

The scale which had been initially determined as 39 items by Yılmaz & Tuncer (2013) was reduced to 38 items by excluding 1 item in accordance with the opinions received from 3 academic members. In consequence of factor analysis carried out over 38 items, the scale was reduced to 22 items. Finally, the scale composing of 22 items is the type of 5 point likert scale. Each item was graded as “1: Strongly disagree”, “2: Disagree”, “3: Neutral”, “4: Agree” and “5: Strongly agree”.

2.4. Data analysis

SSPS programme was used in the analysis of the pre-test and post-test scores of each student both in experiment and control group obtained from the scale of project based virtual learning competencies. Descriptive statistics, Independent samples t Test, Paired Sample t Test were used in the analysis of the data.

Descriptive statistics was used for obtaining general info about the data and to test the compliance of the data with the parametric tests. In descriptive statistics, such information is given: Average (X), Standard Deviation (SD), Median (Mdn), Mode (M), Coefficient of Skewness (CS), Coefficient of Kurtosis (CK).

a) Independent groups t-test was used to compare the pre-test and post-test between groups.

b) Related samples t test is used in comparison of the pre-test and post-test scores of each group.

c) The compliance of the data with parametric tests was examined before making analysis to compare the scores of the groups. For this aim, the below assumptions were tested and parametric tests were implemented by considering these assumptions were met. According to Can (2003), the below assumptions should be met for the implementation of the parametric tests.

d) The scores obtained from post-test and pre-test should be in normal distribution. For this assumption, descriptive statistics was examined.

e) The variances of the groups should be homogeneous. For this assumption, Levene’s test significance level was examined.

Firstly, pre-tests of the groups were compared in terms of PBVLC scores. The academic motivation post-test scores of the groups are compared which has seen that the groups are homogeneous in respect of pre-
test. Additionally, each group’s own pre-test and post-test are compared in accordance with the method used for each group during the study in order to determine the improvements.

3. Findings

3.1. Findings for the comparison of the groups in terms of pre-test

The compliance of the data with parametric tests was tested before comparing pre-test of the groups.

Table 2.

The descriptive statistics results of groups PBVLC pre-test scores

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>(\bar{A})</th>
<th>Mdn</th>
<th>TD</th>
<th>SD</th>
<th>CS</th>
<th>CK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>44</td>
<td>42.84</td>
<td>44</td>
<td>38</td>
<td>9.44</td>
<td>-0.29</td>
<td>0.10</td>
</tr>
<tr>
<td>Control</td>
<td>29</td>
<td>43.66</td>
<td>44</td>
<td>34</td>
<td>10.82</td>
<td>-0.19</td>
<td>-0.75</td>
</tr>
</tbody>
</table>

According to Table 2, it is seen that each group is close to each other in terms of average, median and mode, and it is also seen that their coefficient of kurtosis and skewness are between ±1 value range. Additionally, p value obtained from Levene’s test is calculated as 0.32. This result shows that the variances will be conceded as equal (p>0.05).

Homogeneous distribution of pre-test scores and equal acceptance of variances indicate that the data are appropriate for parametric tests.

The homogeneity of the groups in terms of PBVLC was examined by comparing pre-test scores of the groups before the application

Table 3.

The comparison of PBVLC pre-tests of groups

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>(\bar{A})</th>
<th>SD</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>44</td>
<td>42.84</td>
<td>9.44</td>
<td>-0.34</td>
<td>0.73</td>
</tr>
<tr>
<td>Control</td>
<td>29</td>
<td>43.66</td>
<td>10.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to the obtained results, there is no significant difference between the groups in terms of PBVLC before studying (p=0.73>0.05). It is possible to say that groups are homogeneous in terms of PBVLC level before studying.

3.2. Findings obtained from the comparison of the groups’ post-test scores

The compliance of the data for parametric tests was tested before comparing post-test of the groups.

Table 4.

Descriptive statistic results of groups PBVLC post test scores

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>(\bar{A})</th>
<th>Mdn</th>
<th>TD</th>
<th>SD</th>
<th>CS</th>
<th>CK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>44</td>
<td>54.50</td>
<td>54</td>
<td>49</td>
<td>7.91</td>
<td>0.35</td>
<td>-0.32</td>
</tr>
<tr>
<td>Control</td>
<td>29</td>
<td>50.28</td>
<td>50</td>
<td>47</td>
<td>8.69</td>
<td>0.06</td>
<td>-0.83</td>
</tr>
</tbody>
</table>

According to Table 4, it is seen that each group is close to each other in terms of average, median and mode, and it is also seen that their coefficient of kurtosis and coefficient of skewness are between the ranges of ±1 value. Additionally, p value obtained from Levene’s test was calculated as 0.48. This result shows that the variances will be conceded as equal (p>0.05).

Homogeneous distribution of post-test scores and equal acceptance of variances indicate that the data are appropriate for parametric tests.
It was examined that whether there is difference or not between the groups in terms of PBVLC by comparing the post-test scores.

Table 5.

The comparison of PBVLC post-test of groups

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>\bar{A}</th>
<th>SD</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>44</td>
<td>54.50</td>
<td>7.91</td>
<td>2.14</td>
<td>0.03*</td>
</tr>
<tr>
<td>Control</td>
<td>29</td>
<td>50.28</td>
<td>8.69</td>
<td>2.14</td>
<td>0.03*</td>
</tr>
</tbody>
</table>

*p<0.05

According to the result of independent samples t test which is implemented in the groups; there is significant difference in terms of PBVLC level in favour of experimental group after the study (p=0.03<0.05). Based on this data, it is possible to say that Digital Storytelling method which is implemented during study with the experiment group is effective in increasing the PBVLC level of the students.

3.3. The changes of the groups in terms of PBVLC levels during study

In this study, the effects of project method implemented to control group in real environment and the effects of Digital Storytelling method implemented to experiment group in virtual environment on PBVLC level of the students were examined. For this purpose, each group’s own pre-test and post-test scores were compared.

Parametric tests are implemented between the test scores as the compliance between pre-test and post test scores of experiment and control group and parametric tests obtained beforehand. (Please see Table 2 and Table 4).

3.4. The comparison of pre-test and post-test scores of experiment group

The related samples t test was implemented in order to examine the change in the pre-test and post-test scores of the experimental group during the study.

Table 6.

The comparison of pre-test and post-test scores of experiment group

<table>
<thead>
<tr>
<th>Test</th>
<th>n</th>
<th>\bar{A}</th>
<th>SD</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post test-Pre test</td>
<td>44</td>
<td>11.65</td>
<td>11.87</td>
<td>6.51</td>
<td>0.00*</td>
</tr>
</tbody>
</table>

*p<0.05

According to the results, there is significant difference between the pre-test and post-test scores of the experimental group students for whom Digital Storytelling is implemented obtained from PBVLC scale (p=0.00<0.05). This result shows that the used method increased the PBVLC level of students in the experimental group.

3.5. The comparison of pre-test and post-test scores of control group

The related samples t test is implemented in order to examine the changes in the pre-test and post-test scores of the control group during the study.

Table 7.

The comparison of PBVLC pre-test and post-test scores of control group

<table>
<thead>
<tr>
<th>Test</th>
<th>n</th>
<th>\bar{A}</th>
<th>SD</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post test-Pre test</td>
<td>29</td>
<td>6.62</td>
<td>13.84</td>
<td>2.57</td>
<td>0.01*</td>
</tr>
</tbody>
</table>

*p<0.05
According to the results, there is a significant difference between the pre-test scores and the post-test scores of the control group students who were applied the project method in the real environment from PBVLC scale.

According to the changes in PBVLC levels and scores obtained in the tests for each group during the study:

![Graph showing groups' success level along study](image)

Figure 3. Groups’ success level along study

It is seen that the PBVLC score average of control group was higher when compared with experiment group at the beginning; however, the score level of experiment group increased more than the score level of control group at the end of the study.

4. **Conclusion**

According to the findings, Digital Storytelling and the project methods applied in real environment is effective in increasing the students’ Project-Based Virtual Learning Competence (PBVLC) levels. As the methods used were compared, Digital Storytelling method is more influential than the project method carried out in real environment in terms of increasing students’ PBVLC levels. Different usages of PBL are encountered in the literature. According to Dede (2008), the success levels of the students using Computer Aided PBL method in science and computer courses are higher than the success levels of the students using the traditional PBL method.

PBL is a valid method which is commonly used by teachers today. This method with Digital Storytelling is carried out in virtual environment. According to Karakoyun (2014), Digital Storytelling is a preferred method to acquire and develop the abilities expected from the students in the information age.

Students carried out group work with Digital Storytelling method. Group work can contribute to the development of students’ sense of responsibility. Hence, ChanLin (2008) & Wang (2011) stated that through group work each student could gain responsibility and thus students’ ability to perform group work could improve. Students take on only the task that they share instead of the whole task thanks to group work. Lightening of task burden can lead to creation of more qualified products.

In Digital Storytelling method, students scripted their plots by turning them story and dubbed these scenarios by correlating them with the drawings through microphone. According to Razmia, Pouralib & Nozad (2014), language ability of the students who used Digital Storytelling method improves more, and this situation enables students to learn foreign language easier. Similarly, Ming et al. (2014) have stated that Digital Storytelling provides more interactive interpersonal communication, socialisation of individual and improving ability to use technology. Menezes (2012) has specified that Digital Storytelling contributes to improvement in imagination, language development abilities and self-confidence of students. Likewise,
according to Sylla, Coutinho & Branco (2014), Digital Storytelling can be effective in increasing students’ performance and skills of imagination and creative thinking.

Students used some supporting software such as Photoshop, Paint as well as Photostory software and hardware devices such as computer, the internet, microphone and camera during the study. Michalski, Hodges & Banister (2005), Karakoyun (2014) have stated that the process of creating digital story improves students’ communication skills and abilities to use technology.

It has been expected from students that they will make drawings and fulfil certain skills on the subject of use of certain software and hardware during the process of Digital Storytelling. Karakoyun (2014) has stated that students have difficulty in this process. For this reason, students’ competence to have certain skills has occurred as a disadvantage of the method.

References

