Matlab Applications for Skew-Symmetric Matrices and Integral Curves in Lorentzian Spaces

Tunahan TURHANa,*, Y. Emre GÖKTEPEb, Nihat AYYILDIZc

a Vocational School of Technical Sciences, Süleyman Demirel University, Isparta, TURKEY
b Necmettin Erbakan University, Seydişehir Vocational School, 42360 Konya, TURKEY
c Süleyman Demirel University, Department of Mathematics, 32260 Isparta, TURKEY

* Sorumlu yazarın e-posta adresi: tunahanturhan@sdu.edu.tr

\textbf{ABSTRACT}

In [8], the authors obtained the non-zero solutions of the equation $A(x)=0$, $x \in E_{2n+1}$, in Lorentzian space E_{2n+1}, where A is a skew-symmetric matrix corresponding to the linear map A and got normal forms of the skew-symmetric matrix A, depending on the causal characters of the vector x. Taking into consideration the structure of the matrix A, we generate Matlab codes and make some Matlab applications for normal form of skew-symmetric matrix. Also, we give some Matlab codes for the linear first order system of differential equations which the solution of the system gives rise to integral curves of linear vector fields in such a space. Moreover, we give some application with respect to special case of n and causal characters of the vector x for Matlab.

\textbf{Keywords:} Lorentz space, Skew symmetric matrix, Vector field, Matlab.

Lorentz Uzaylarında Anti-simetrik Matrisler ve İntegral Eğrileri İçin Matlab Uygulamaları

\textbf{ÖZET}

\textbf{Anahtar Kellimeler:} Lorentz uzay, Anti-simetrik matris, Vektör alanı, Matlab.
I. INTRODUCTION

Lorentzian Geometry, which is simultaneously the geometry of special relativity, has an important role in differential geometry. The structural and characteristic differences of Lorentzian geometry has attracted the attention of many researches. So, there is a lot of literature dealing with the geometry of vectors, curves and surfaces with respect to their causal character in Lorentzian geometry.

We interest to normal forms of skew-symmetric matrices and vector fields on the Lorentzian space E_{2n+1} that are linear with respect to a chosen linear map $A: E_{2n+1} \to E_{2n+1}$. Note that when $n=3$ and the index is zero, such vector fields can be specified by integral curves. We recall that an integral curve is a parametric curve that represents a specific solution to an ordinary differential equation or system of equations. If the differential equation is represented as a vector field, then the corresponding integral curves are tangent to the field at each point. Such curves could represent the histories of small text particles, in which case they would be geodesics, or they might represent the flow lines of a fluid [2]. Integral curves are called by various other names, depending on the nature and interpretation of the differential equation or the vector field. In physics, such curves for an electric field or magnetic field are known as field lines, and for the velocity field of a fluid are known as streamlines. In dynamical systems, the integral curves for a differential equation that governs a system are referred to as trajectories or orbits [4].

The purpose of this paper is to transfer the normal forms of skew-symmetric matrices and system of differential equations obtained by Turhan and Ayyıldız in Lorentzian $(2n+1)$-spaces into computer environment with the aid of MATLAB (short for MATrix LABoratory) program. This software is a special and important computer program optimized to perform engineering and scientific calculations [2, 5]. Also, the solutions of system of differential equations are given with the aid of such a program. So, we think that this program simplifies the works related with integral curves and skew-symmetric matrices in $(2n+1)$-dimensional Lorentzian space.

We first recall some general notions and notations needed throughout the paper, and repeat some of the definitions mentioned in the introduction more formally. Section 3 deals with some applications on MATLAB program for the skew-symmetric matrices in such a space. Section 4 deals with some applications for the system of differential equations and their solutions. Also this section contains some examples with respect to specific values of n.

II. PRELIMINARIES

The Lorentzian space $(E_{2n+1},<,>) = E_{2n+1}$ is the $(2n+1)$-dimensional vector space E_{2n+1} endowed with the pseudo scalar product

$$<v,w> = -v_1w_1 + \sum_{i=2}^{2n+1}v_iw_i$$

(1)
where \(v = (v_1, v_2, ..., v_{2n+1}) \), \(w = (w_1, w_2, ..., w_{2n+1}) \) in \(E^{2n+1}_1 \). We say that the vector \(v \in E^{2n+1}_1 \) is spacelike, lightlike or timelike if \(\langle v, v \rangle > 0 \) or \(v = 0 \), \(\langle v, v \rangle > 0 \) and \(v \neq 0 \), and \(\langle v, v \rangle < 0 \), respectively, [6]. The norm of a vector \(v \in E^{2n+1}_1 \) is defined by \(||v|| = \sqrt{\langle v, v \rangle} \).

The signature matrix \(S \) in \((2n+1)\)-dimensional Lorentzian space \(E^{2n+1}_1 \) is the diagonal matrix whose diagonal entries are \(s_1 = -1 \) and \(s_2 = s_3 = \cdots = s_{2n+1} = +1 \). We call that \(A \) is a skew-symmetric matrix in \((2n+1)\)-dimensional Lorentzian space if its transpose satisfies the equation \(A^T = -SAS \), [6].

Let \(X \) be a vector field on \(E^{2n+1}_1 \). By an integral curve of the vector field \(X \) we understand a curve \(\alpha : (a, b) \to E^{2n+1}_1 \) such that its every tangent vector belongs to the vector field \(X \). If \(\frac{da}{dt} = X_{\alpha(t)} \), \(\forall t \in I \), is satisfied, then the curve \(\alpha \) is called an integral curve of the vector field \(X \). A vector field \(X \) on \(E^{2n+1}_1 \) is called linear if \(X_{\alpha} = \langle SAS \rangle(v) \) for all \(v \in E^{2n+1}_1 \), where \(A \) is a linear mapping from \(E^{2n+1}_1 \) into \(E^{2n+1}_1 \) and \(S \) is a linear mapping corresponding to matrix \(S \), [7, 8].

A frame field \(\Phi = \{u_1, ..., u_n, u_2n, u_{2n+1}\} \) on \(E^{2n+1}_1 \) is called a pseudo orthonormal frame field, [6], if

\[
\begin{align*}
\langle u_{2n}, u_{2n} \rangle &= -\langle u_{2n+1}, u_{2n+1} \rangle = -1, \\
\langle u_{2n}, u_{i} \rangle &= \langle u_{2n+1}, u_{i} \rangle = 0, \\
\langle u_{i}, u_{j} \rangle &= \delta_{ij}, \quad i, j = 1, ..., n.
\end{align*}
\]

Definition 2.1. Let \(\alpha(s) \), \(s \) being the arclength parameter, be a non-null regular curve in semi-Euclidean space \(E^{2n+1}_1 \). The changing of a pseudo orthonormal frame field \(\{u_1, ..., u_n, u_{2n}, u_{2n+1}\} \) of \(E^{2n+1}_1 \) along \(\alpha \) is given by

\[
\begin{align*}
 u'_1(s) &= \kappa_1(s)u_2(s) \\
 u'_i(s) &= -\varepsilon_{i-1} \varepsilon_{i-1} \kappa_{i-1}(s)u_{i-1}(s) + \kappa_i(s)u_{i+1}(s), \quad 2 \leq i \leq 2n, \\
 u'_{2n+1}(s) &= -\varepsilon_{2n} \varepsilon_{2n} \kappa_{2n}(s)u_{2n}(s).
\end{align*}
\]

These equations are called the Frenet-Serret type formulae for \(\alpha(s) \), where \(\kappa_i(s), \quad 1 \leq i \leq 2n \), is the curvature function of \(\alpha \), \(\kappa_i(s) = \varepsilon_{i+1} \langle u'_i(s), u_{i+1}(s) \rangle \), and \(\varepsilon_i \) is the signature of the vector \(u_i, \quad 1 \leq i \leq 2n \), [10].

III. MATLAB Applications for Skew-Symmetric Matrices

In this section, we give some applications on MATLAB program for the skew-symmetric matrices provide the citation to the paper by Turhan and Ayyıldız in Lorentzian \((2n+1)\)-spaces. For the non-zero solutions of the equation \(A(x) = 0 \), \(x \in E^{2n+1}_1 \), in the Lorentzian space \(E^{2n+1}_1 \), where \(A \) is the skew-symmetric matrix corresponding to the linear map \(A \), the normal forms of the matrix \(A \) with respect to causal character of \(x \) can be written as:
Case 1: If the vector \mathbf{x} is timelike, then we get:

$$
\begin{bmatrix}
0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & -L_1 & 0 & \cdots & 0 & 0 \\
0 & L_1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & -L_2 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & -L_3 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & L_n \\
0 & 0 & 0 & 0 & \cdots & 0 & -L_n \\
0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{bmatrix}
$$

where $L_i \in \mathbb{R} - \{0\}, 1 \leq i \leq n, [8]$.

Case 2: If the vector \mathbf{x} is spacelike, then we get:

$$
\begin{bmatrix}
0 & L_1 & 0 & 0 & \cdots & 0 & 0 \\
L_1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & -L_2 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & -L_2 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & L_n \\
0 & 0 & 0 & 0 & \cdots & 0 & -L_n \\
0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{bmatrix}
$$

where $L_i \in \mathbb{R} - \{0\}, 1 \leq i \leq n, [9]$.

Case 3: If the vector \mathbf{x} is lightlike, then we get:

$$
\begin{bmatrix}
0 & 0 & L_1 & L_2 & L_3 & \cdots & \cdots & L_{2n-2} & L_{2n-1} \\
L_1 & -L_1 & 0 & L_2 & L_3 & \cdots & \cdots & \cdots & L_{2n-2} \\
L_2 & -L_2 & -L_2 & 0 & L_3 & \cdots & \cdots & \cdots & L_{2n-2} \\
L_3 & -L_3 & L_2 & L_3 & L_4 & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
L_{2n-2} & L_{2n-2} & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & L_{2n-2} \\
L_{2n-1} & L_{2n-1} & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & L_{2n-2}
\end{bmatrix}
$$

where $L_i \in \mathbb{R} - \{0\}, 1 \leq i \leq n$, [8].

MATLAB loop structures and comparison blocks were used in this application which was formed according to characteristic features of these matrices. A screenshot of this application is given below:

![Figure 1. The screenshot for characteristic features of the matrices](image)

614
For example, if we get $n = 3$, produced matrices with respect to causal character of x are given, respectively:

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

Figure 2. The matrix for the timelike vector x

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
L1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -L2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Figure 3. The matrix for the spacelike vector x

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
L1 & 0 & 0 & 0 & 0 & 0 \\
L2 & 0 & 0 & 0 & 0 & 0 \\
L3 & 0 & 0 & 0 & 0 & 0 \\
L4 & 0 & 0 & 0 & 0 & 0 \\
L5 & 0 & 0 & 0 & 0 & 0 \\
L6 & 0 & 0 & 0 & 0 & 0 \\
L7 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Figure 4. The matrix for the lightlike vector x

Meanwhile, if the checkbox is set, the value of $L_i \in \mathbb{R} - \{0\}$ is assumed as 1 and the matrices are produced for this value. A part of the code block which produce matrix for $L_i \in \mathbb{R} - \{0\}$, n parameters and the timelike vector x is as below:

```matlab
n=fix(n/2);value=get(handles.checkbox1, 'value');for i=min:1:max
    for j=min
        text(i,j)=('0');
    end
end
if(value==1)
    for i=1:fix(n/2)
        if d==1
            matrix(2*i,2*i)=(-1);matrix(2*i+1,2*i)=(-1);matrix(2*i+2,2*i)=(1);
        else
            matrix(2*i,2*i)=(-1);matrix(2*i+1,2*i)=(1);matrix(2*i+2,2*i)=(-1);
        end
        i=i+1;
    end
end
```

Figure 5. A part of the code block for the timelike vector x
IV. MATLAB APPLICATIONS FOR INTEGRAL CURVES

Let X be a linear vector field in E^{2n+1}_1 determined by the matrix $\begin{bmatrix} A & C \\ 0 & 1 \end{bmatrix}$ with respect to a pseudo-orthonormal frame $\{0; u_1, u_2, ..., u_{2n+1}\}$, where A is a normal formed skew-symmetric matrix and C is a $(2n+1) \times 1$ column matrix such that

$$C = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{2n-1} \\ a_{2n} \\ a_{2n+1} \end{bmatrix}.$$

The screenshot of the MATLAB program written for the differential equation system which gives integral curves of this linear vector field is given below:

![MATLAB screenshot](image)

Figure 6. A screenshot for the differential equation system

Produced differential equation systems for $(n = 3)$ and the timelike vector x is given below:

![Differential equations](image)

Figure 7. A screenshot for the differential equation system for the timelike vector $x
A part of the code block which produces the differential equation system with respect to the timelike vector \(x \) is as below:

```matlab
[i,d]=size(matrix); for i=1:d-1 
    if not(isspace(matrix{i,1}))
        if strcmp(matrix{i,1}(1:1),'=')
            st=st+str2double(matrix{i,1}(1:1));
        elseif strcmp(matrix{i,1}(1:1),'-')
            st=st+str2double(matrix{i,1}(1:1));
        end
    end
end
if length(st)<8
    st=st-'0';
end
str(i,1)=st;
end
[e,f]=size(str);
for temp=1:1
    str(temp+1,1)=str(temp,1);
end
str(1,1)=[neg]; str(2,1)=['\ ']; str(3,1)=['\ '];
```

Figure 8. A part of the code block for differential equation for the timelike vector \(x \).

If the checkbox is set in order to facilitate solving differential equation systems, the value of \(L \in \mathbb{R} - \{0\} \) is assumed as 1. For instance, if we select \(n = 3 \), the following differential equation systems and its solution is produced by clicking \(x \)-spacelike button.

![Differential Equations System in Lorentz Space](image)

Figure 9. A screenshot for the differential equation system and its solution for the spacelike vector \(x \)

The program not only produces solutions of differential equation systems but also their graphs for \(n = 1 \). For example, the solution and graph for the \(x \)-spacelike is given as
Figure 10. The solution for the differential equation system and its graph for the spacelike vector x, respectively.

Similarly, the solution and graph for the x-lightlike is given as

Figure 11. The solution for the differential equation system and its graph for the lightlike vector x, respectively.

Moreover, it is possible to classify integral curves of linear vector fields according to the rank of $[AC]$ matrix, [3]. The screenshot of the MATLAB programme which gives differential equation systems according to the rank of $[AC]$ matrix is as below:

Figure 12. A screenshot for the matrix $[AC]$.
If we use x-spacelike button with parameter $n = 3$ and rank $= 5$, the programme output for matrix
\[
\begin{bmatrix}
A & C \\
0 & 1
\end{bmatrix}
\]
and differential equation system are as below:

Figure 13. The matrix $[AC]$ for the spacelike vector x

Also, if the checkbox is set with parameters $n = 3$ and rank $= 5$, the programme outputs for the matrix of the linear vector field and differential equation system are as below:

Figure 14. The differential equation system for the spacelike vector x and the rank $[AC]=5$

Figure 15. The matrix $[AC]$ for the spacelike vector x with aid of checkbox
The differential equation system for the spacelike vector x with aid of checkbox

\[
\begin{align*}
\frac{dx}{dt} &= 2a1 \\
\frac{dx}{dt} &= 1+a2 \\
\frac{dx}{dt} &= 4a3 \\
\frac{dx}{dt} &= x3+a4 \\
\frac{dx}{dt} &= 5 \\
\frac{dx}{dt} &= 0 \\
\frac{dx}{dt} &= 0
\end{align*}
\]

Figure 16. The differential equation system for the spacelike vector x with aid of checkbox

A part of the code block which produces the matrix \[
\begin{bmatrix}
A & C \\
0 & 1
\end{bmatrix}
\] with respect to the rank of the matrix $[AC]$ and the spacelike vector x is as below:

```matlab
[a,b]=size(matrix);
if rank==1
    for i=1:a
        for j=1:b-1
            matrix(i,j)=0;
        end
    end
else if rank>1
    if mod(rank,2)==0
        for i=(rank+1):(a-1)
            for j=1:b
                matrix(i,j)=0;
            end
        end
    end
end
```

Figure 17. A part of the code block for the rank of the matrix $[AC]$ for the spacelike vector x.

V. CONCLUSION

This work gives and develops the Matlab codes for the normal form of skew-symmetric matrices and system of differential equations in Lorentzian $(2n+1)$-spaces. So, this study may shed light on future work between differential geometry and computer sciences.

ACKNOWLEDGEMENT: We would like to thank the anonymous referee for the very useful comments and detailed corrections which we found very constructive and helpful to improve our manuscript.
VI. REFERENCES

