Some New Integral Inequalities for n-Times Differentiable Godunova-Levin Functions

Huriye KADAKAL¹, Mahir KADAKAL²*, İmdat ISCAN²

¹Institute of Science, Ordu University-Ordu /TÜRKİYE
²Department of Mathematics, Faculty of Sciences and Arts, Giresun University-Giresun /TÜRKİYE

Received: 24.02.2017; Accepted: 25.09.2017 http://dx.doi.org/10.17776/csj.358766

Abstract: In this work, by using an integral identity together with the Hölder integral inequality we establish several new inequalities for n-times differentiable Godunova-Levin functions

Keywords: Convex function, Godunova-Levin function, Hölder Integral inequality.

1. INTRODUCTION

Theory of convex functions plays an important role in different fields of pure and applied sciences. Recently much attention has been given to theory of convex functions by many researchers. In this paper, by using the Hölder integral inequality, we establish some new inequalities for functions whose n-th derivatives in absolute value are convex functions. For some inequalities, generalizations and applications concerning convexity see [5-12, 21]. Recently, in the literature there are so many papers about n-times differentiable functions on several kinds of convexities. In references [2-4, 11, 14, 17, 19, 20], readers can find some results about this issue. Many papers have been written by a number of mathematicians concerning inequalities for different classes of convex and Godunova-Levin functions see for instance the recent papers [1, 13, 15, 16, 18] and the references within these papers.

Definition 1.1: A function \(f : l \subseteq \mathbb{R} \rightarrow \mathbb{R} \) is said to be convex if the inequality

\[
 f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y)
\]

is valid for all \(x, y \in l \) and \(t \in [0,1] \). If this inequality reverses, then \(f \) is said to be concave on interval \(l \neq \emptyset \). This definition is well known in the literature.

* Corresponding author. Email address: mahirkadakal@gmail.com
http://dergipark.gov.tr/csj ©2016 Faculty of Science, Cumhuriyet University
Definition 1.2: A function \(f: I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) is said to be Godunova-Levin function, if

\[
f(tx + (1 - t)y) \leq \frac{f(x)}{t} + \frac{f(y)}{1 - t}
\]

where \(\forall x, y \in I, t \in (0,1) \).

Throughout this paper we will use the following notations and conventions. Let \(J = [0, \infty) \subseteq \mathbb{R} = (-\infty, +\infty) \), and \(a, b \in J \) with \(0 < a < b \) and

\[
A(a, b) = \frac{a + b}{2}, \quad L_p(a, b) = \left(\frac{b^{p+1} - a^{p+1}}{(p+1)(b-a)} \right)^{\frac{1}{p}}, a \neq b, p \in \mathbb{R}, \quad p \neq -1, 0
\]

be the arithmetic, geometric, identic, harmonic, logarithmic, generalized logarithmic mean for \(a, b > 0 \) respectively.

For we obtain the main results we will use the following Lemma [14].

Lemma 1.1: Let \(f: I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be \(n \)-times differentiable mapping on \(I' \) for \(n \in \mathbb{N} \) and \(f^{(n)} \in L[a, b] \), where \(a, b \in I' \) with \(a < b \), we have the identity

\[
\sum_{k=0}^{n-1} (-1)^k \frac{f^{(k)}(b)b^{k+1} - f^{(k)}(a)a^{k+1}}{(k+1)!} = \int_{a}^{b} f(x)dx = \frac{(-1)^{n+1}}{n!} \int_{a}^{b} x^n f^{(n)}(x)dx.
\]

2. MAIN RESULTS

Theorem 2.1. For \(\forall n \in \mathbb{N} \); let \(f: I \subseteq (0, \infty) \rightarrow \mathbb{R} \) be \(n \)-times differentiable function on \(I' \) and \(a, b \in I' \) with \(a < b \). If \(f^{(n)}(x) \) for \(q > 1 \) is Godunova-Levin function on \([a, b] \), then the following inequality holds:

\[
\sum_{k=0}^{n-1} (-1)^k \frac{f^{(k)}(b)b^{k+1} - f^{(k)}(a)a^{k+1}}{(k+1)!} - \int_{a}^{b} f(x)dx \leq \frac{1}{n!} (b - a)^\frac{1}{p} C(a, b, n, p) A^\frac{1}{p} ([f^{(n)}(a)]^q, [f^{(n)}(b)]^q)
\]

Where \(\frac{1}{p} + \frac{1}{q} = 1 \), \(p < 2 \) and \(C(a, b, n, p) = \int_{a}^{b} \frac{x^n}{(x-a)^{p-1}(b-x)^{p-1}} dx \).

Proof. If \(f^{(n)} \) for \(q > 1 \) is Godunova-Levin function on \([a, b] \), using Lemma 1.1, the Hölder integral inequality and

\[
|f^{(n)}(x)|^q = \left| f^{(n)} \left(\frac{x-a}{b-a} b + \frac{b-x}{b-a} a \right) \right|^q \leq \frac{|f^{(n)}(b)|^q}{b-a} + \frac{|f^{(n)}(a)|^q}{b-a},
\]

\[
|f^{(n)}(x)|^q \leq \frac{b-a}{x-a} |f^{(n)}(b)|^q + \frac{b-a}{b-x} |f^{(n)}(a)|^q
\]

\[
(x-a)(b-x)|f^{(n)}(x)|^q \leq (b-a)(b-x)|f^{(n)}(b)|^q + (b-a)(x-a)|f^{(n)}(a)|^q
\]

we have

\[
\sum_{k=0}^{n-1} (-1)^k \frac{f^{(k)}(b)b^{k+1} - f^{(k)}(a)a^{k+1}}{(k+1)!} - \int_{a}^{b} f(x)dx \leq \frac{1}{n!} \int_{a}^{b} x^n |f^{(n)}(x)|dx
\]
Proof. From Lemma 1.1 and Hölder integral inequality, we obtain

\[
\sum_{k=0}^{n-1} (-1)^k \left(\int_a^b \frac{f^{(k)}(b)x^{k+1} - f^{(k)}(a)x^{k+1}}{(k+1)!} dx \right) \leq \frac{1}{n!} \left(\int_a^b f^{(n)}(x) dx \right) \left(\int_a^b x^n f^{(n)}(x) dx \right) \frac{1}{q}
\]

It is stated that the improper integral \(C(a, b, n, p) \) is convergent for \(1 < p < 2 \).

Corollary 2.1. Under the conditions Theorem 2.1 for \(n = 1 \) we have the following inequality:

\[
\left| \frac{f(b)x - f(a)x}{b - a} - \frac{1}{b - a} \int_a^b f(x) dx \right| \leq \frac{1}{n!} C(a, b, 1, p)(b - a)^{\frac{3}{2} + \frac{1}{q}} A^\frac{1}{q}(|f^{(1)}(a)|^q, |f^{(1)}(b)|^q).
\]

Theorem 2.2. For \(n \in \mathbb{N} \); let \(f: (0, \infty) \subset \mathbb{R} \to \mathbb{R} \) be \(n \)-times differentiable function and \(0 \leq a < b \). If \(|f^{(n)}|^q \in L[a, b] \) and \(|f^{(n)}|^q \) for \(q > 1 \) is Godunova-Levin function on \([a, b]\), then the following inequality holds:

\[
\sum_{k=0}^{n-1} (-1)^k \left(\int_a^b \frac{f^{(k)}(b)x^{k+1} - f^{(k)}(a)x^{k+1}}{(k+1)!} dx \right) \leq \frac{1}{n!} (b - a)^{\frac{2}{q} + \frac{1}{q}} D^\frac{1}{q}(|f^{(1)}(a)|^q, |f^{(1)}(b)|^q).
\]
\[
\frac{1}{n!} D^{\frac{1}{q}}(a, b, n, p) \left[\int_a^b x^n \left[(b-a)(b-x)|f^{(n)}(b)|^q + (b-a)(x-a)|f^{(n)}(a)|^q \right] dx \right]^\frac{1}{q}
\]
\[
\leq \frac{1}{n!} D^{\frac{1}{q}}(a, b, n, p) \times \left[(b-a)|f^{(n)}(b)|^q \left\{ b \left(\frac{b^{n+1} - a^{n+1}}{n+1} \right) - \left(\frac{b^{n+2} - a^{n+2}}{n+2} \right) \right\}
\right.
\]
\[
+ \left. (b-a)|f^{(n)}(a)|^q \left\{ \left(\frac{b^{n+2} - a^{n+2}}{n+2} \right) - a \left(\frac{b^{n+1} - a^{n+1}}{n+1} \right) \right\} \right]^\frac{1}{q}
\]
\[
\leq \frac{1}{n!}(b-a)^2 D^{\frac{1}{q}}(a, b, n, p) \times \left[f^{(n)}(b)|^q \left\{ b L_n^a(a, b) - L_{n+1}^{a+1}(a, b) \right\} + f^{(n)}(a)|^q \left\{ L_{n+1}^{a+1}(a, b) - a L_n^a(a, b) \right\} \right]^\frac{1}{q}
\]

It is stated that the improper integral \(D(a, b, n, p) \) is convergent for \(1 < p < 2 \).

Corollary 2.2. Under the conditions Theorem 2.2 for \(n = 1 \) we have the following inequality:

\[
\left| \frac{f(b) - f(a)}{b-a} - \frac{1}{b-a} \int_a^b f(x) dx \right|
\leq \left(\frac{1}{6} \right)^\frac{1}{q} (b-a)^{3q-1} D^{\frac{1}{q}}(a, b, 1, p) [(b+2a)|f'(b)|^q + (2b+a)|f'(a)|^q.]^\frac{1}{q}.\]

REFERENCES

[7]. İşcan İ., “Hermite-Hadamard type inequalities for harmonically convex functions”,

