Open tibial pilon fractures: treatment with ankle-spanning Ilizarov fixator

Ercan Şahin¹, Mahmut Kalem²

¹Department of Orthopedics and Traumatology, Bülent Ecevit University School of Medicine, Zonguldak, Turkey
²Department of Orthopedics and Traumatology, Ankara University School of Medicine, Ankara, Turkey

ABSTRACT

Objectives. The aim of this retrospective study was to report the treatment results obtained with the ankle-spanning Ilizarov fixator technique in the treatment of complex OTA/AO type 43C3 open tibial pilon fractures.

Methods. A total of 14 patients with open OTA/AO type 43C3 tibial pilon fractures were evaluated. The demographics and fracture characteristics, preoperative and postoperative radiological evaluations, duration of follow-up (months), time to union (months) and complications were recorded. After collection of operative data, patients were invited for functional and radiological outcome evaluation. American Orthopaedic Foot and Ankle Society (AOFAS) scores and range of movement (ROM) of the ankle joint were investigated. Also radiologically the ankle osteoarthritis level according to the Bargon et al. criteria was noted.

Results. The mean age of the patients was 48.7 years (range, 26-72 years). The mean follow-up period was 32 months (range, 25-46 months). The clinical and radiological time to union was mean 6.5 months (range, 5-11 months). On the postoperative ankle CT images, the separation within the ankle was measured as < 2mm in all patients and in 3 patients, stepping was measured as > 2mm. Following removal of the external fixator, dorsiflexion was measured as mean 15.5° (range, 0°-23°) and plantar flexion as mean 26.14° (range, 13°-36°). The mean AOFAS was 80.35 (range, 56-92).

Conclusion. Satisfactory results can be obtained with the Ilizarov external fixator passing the ankle in the permanent treatment of AO-43C3 type open tibial pilon fractures.

Keywords: pilon fracture, open fracture, Ilizarov, external fixation

Introduction

Intra-articular fractures of the distal tibia (pilon fractures) generally occur as a result of torsional movement combined with axial forces. They constitute 3%-10% of tibial fractures and 1% of all lower extremity fractures [1]. As there is thin soft tissue coverage on the tibia and when there is concomitant severe soft tissue damage, especially in complex OTA/AO type 43C3 fractures, difficulties in treatment are experienced [2, 3].

According to the soft tissue injury, there are various treatment options such as staged management with primary external fixator followed by open reduction and internal fixation, early open reduction and internal fixation, plate application with minimally invasive approaches and using external fixators with minimally invasive reduction and fixation techniques for definitive treatment [4-6]. In the current treatment of pilon fractures with concomitant soft

Address for correspondence:
Ercan Şahin, MD., Bülent Ecevit University School of Medicine, Department of Orthopedics and Traumatology, 67100 Zonguldak, Turkey E-mail: dr_erc_sah@yahoo.com.tr Phone: +903722613055
Received: December 14, 2017; Accepted: December 27, 2017; Published Online: December 28, 2017

Copyright © 2018 by The Association of Health Research & Strategy
tissue damage, the treatment option of external fixation with or without minimally invasive techniques is often selected because it creates fewer complications such as deep or superficial wound infection, osteomyelitis or amputation [7-9].

The aim of this study was to report the treatment results obtained with the ankle-spanning Ilizarov fixator technique in the treatment of complex OTA/AO type 43C3 open tibial pilon fractures.

Methods

This retrospective study was carried out by approval and supervision of Local Ethical Committee. Using the hospital data system, the radiographs and information forms of 113 patients who underwent surgery for tibial fractures between January 2009 and December 2015 were investigated. A total of 34 patients aged > 16 years had an acute, unilateral, open distal tibial intra-articular fracture extending to the metaphysis (OTA/AO type 43C3 tibial pilon fracture) were analyzed (Figure 1a). After exclusion of 5 patients with less than 2 years follow-up, 7 patients whose preoperative or postoperative ankle tomography images were not available and 8 patients who were treated with a technique other than ankle-spanning Ilizarov fixator technique, a total of 14 patients were included in the study for evaluation.

Demographic data including age, gender and mechanism of injury (fall from height, traffic accident, mining accident, and others) were recorded. From the emergency department examination forms and operation notes, open fractures were classified according to the Gustillo and Anderson [10]. The size of gap (measured on the preoperative and postoperative axial CT images, mm) and the size of step (measured on the preoperative and postoperative sagittal CT images, mm) between two largest fracture fragments (with using Centricity PACS-IW software, General Electric healthcare) (Figure 1b, 1c), presence/type of fibula fixation (plate, K-wire), duration of follow-up (months), time to union (months) and complications (pin site infection, malunion, osteomyelitis) were recorded. After collection of operative data, patients were invited (with phone call) for functional and radiological outcome evaluation at least one year postoperatively. At this final follow-up examination, functional evaluation using American Orthopaedic Foot and Ankle Society (AOFAS) scores and range of movement (ROM) of the ankle joint were investigated. Also radiologically the ankle osteoarthritis level according to the Bargon et al. [11] criteria was noted.

Figure 1. A 29-year-old miner (Case 4) with Gustillo and Anderson type 3a, OTA/AO-43C3 tibial pilon fracture. Lateral radiograph of the left ankle showing metaphyseal comminution (a), preoperative axial CT image of the ankle showing the gap between two largest fracture fragments (b), preoperative sagittal CT image of the ankle (c), postoperative AP radiograph after application of the ankle-spanning Ilizarov fixator (d), AP radiograph of the tibia 4 months after fixation (e), AP and lateral radiographs of the tibia six months after injury. The frame was removed. The patient was free of pain over the fracture line, with no complaints during weight-bearing. Radiological union was delayed (f and g) and active dorsiflexion of the ankle was about 0° (h).
Surgical Technique

The operations were performed by the same orthopedic surgeon. Within 8 hours of admission to the emergency department, the patients were prepared for the surgery. The frame was constructed before beginning of the surgery in the operating room. The ring sizes are selected according to the circumference of the limb allowing about two finger widths to the skin. The first two rings were arranged for placing proximal to the fracture and the third ring was arranged for placing just proximal to the ankle joint. The 3 rings were connected to each other with 4 threaded rods. With the patient in supine position, following wound debridement with saline, soft tissue was closed. Firstly the fibula was fixed closely with 2 intramedullary K-wire or openly with a 1/3 tubular plate to maintain alignment. The preconstructed Ilizarov frame was applied to the limb and fixed with wires and 5 mm Schanz screws to the tibia under fluoroscopic control. The fracture reduction of the ankle was tried to achieve closely with olive wires and ligamentotaxis and the frame was used an indirect reduction device also. The ring, which was placed just proximal to the ankle joint, was connected laterally to calcaneus with a Schanz screw (Figure 1d).

Postoperative Follow-up

Prophylactic antibiotherapy was administered to all patients for two days. The leg was elevated to decrease soft tissue swelling. Pin and wound care was done with iodine. Following the reduction of the leg edema, the patients were mobilized, but not allowed to weight bear until the 6th week postoperatively. At 6th week the Schanz screw was removed from the calcaneus and full weight-bearing was permitted with ankle exercises (Figure 1e). Clinical and radiological follow-ups were repeated every 3 weeks until union was achieved. In patients with no pain in the fracture line during the follow-up examinations and findings of union in at least 3 cortices on direct radiographs, the fixator was removed and a short-leg circular plaster cast was applied. Weight-bearing was continued with the plaster cast, which was removed after 1 month. Statistical data were expressed by the mean and range values or number and percent (Figure 1f, 1g).

Results

A total of 14 patients (9 males, 5 females) with AO-43C3 type open tibial pilon fractures were evaluated. The mean age of the patients was 48.7 years (range, 26-72 years). According to the Gustillo and Anderson classification, 4 fractures were type 3a, 3 were type 2 and 7 were type 1 open fractures. The mechanism of injury was a fall from height in 3 cases, a traffic accident in 7 and a mining accident in 3. The mean follow-up period was 32 months (range, 25-46 months). All the patients had a concomitant fibula fracture and while fixation with plate or K-wire was applied to 9 patients, fixation was not applied in 5 cases. Bone union was obtained in all patients. The clinical and radiological time to union was mean 6.5 months (range, 5-11 months) (Table 1).

In 12 (85.7%) patients there was large separation of > 2 mm and in 10 (71.4%) patients there was large stepping of > 2 mm on preoperative axial and sagittal CT images. On the postoperative ankle CT images, the separation within the ankle was measured as < 2 mm in all patients and in 3 patients, stepping was measured as > 2 mm.

Pin site infection was observed in 5 (35%) of the 14 patients and all recovered with oral antibiotic treatment. The wires were removed in 2 patients. No deep tissue infection or osteomyelitis was observed in any patient. Malunion was seen in 2 (14%) patients. Valgus angulation of approximately 11° was seen in 1 patient and posterior angulation of approximately 15° in 1 patient. No additional surgery was performed on either patient.

Following removal of the external fixator, dorsiflexion was measured as mean 15.5° (range, 0°-23°) and plantar flexion as mean 26.14° (range, 13°-36°). At the final follow-up examination, the mean AOFAS was 80.35 (range, 56-92).

On the ankle radiographs taken at the final follow-up examination, arthrosis was evaluated as grade 4 in 1 patient, grade 3 in 2 patients, grade 2 in 5 patients and grade 1 in 6 patients.

Discussion

In the treatment of high-energy pilon fractures, although the use of an Ilizarov fixator passing the ankle joint has advantages such as providing indirect reduction with ligamentotaxis, allowing the fixation of intra-articular fragments with very small incisions, no need for soft tissue dissection and allowing the possibility of stable and permanent fixation, there can also be said to be the disadvantage of discomfort for
Due to the frequent occurrence of complications such as wound problems, infection and osteomyelitis in high-energy open pilon fractures, an Ilizarov external fixation method was selected in the permanent treatment of the patients in this study [14-16]. Although there are few studies that have reported the joint reduction quality following surgery of high-energy pilon fractures, in a study of 30 patients treated with Ilizarov external fixator, Osman et al. [17] reported that acceptable reduction was obtained in 46.6% and poor reduction in 20%. In another study of 17 patients, Kapoor et al. [13] reported that in 4 patients with AO-43C3 type open tibial pilon fractures, acceptable joint reduction was obtained with Ilizarov external fixator passing the joint. In the current study, although the patient number was greater, while small separation of < 2mm was achieved in all, stepping in the joint of >2 mm could not be prevented in 3 patients.

Prospective randomized studies which have compared internal fixation and external fixation in high-energy pilon fractures have reported that significantly fewer complications were seen in patients applied with external fixation [14, 18, 19]. Following treatment made with Ilizarov external fixator in 21 cases of complex tibial pilon fracture, 9 of which were open fractures, Vidyadhara and Sharath [20] reported that superficial pin site infection developed in 7 patients and deep pin site infection in 1, but no information was given about whether or not these were patients with open fractures. Okcu and Aktuglu [9] compared 44 patients with AO-43C3 type tibial pilon fractures treated with Ilizarov external fixator passing and not passing the ankle joint. It was reported that 12 patients had an open fracture and no osteomyelitis developed in any patient without differentiation of open and closed fractures, malunion developed in 10 patients and pincer toe developed in 6 patients [9]. In the current study, no osteomyelitis was observed, but there was pin site infection in 5 patients and malunion in 2.

Ankle dorsiflexion movement > 10° is usually sufficient for walking [21]. Kapoor et al. [13] reported that of 17 patients with high-energy pilon fractures treated with Ilizarov external fixator passing the ankle, 75% had ankle dorsiflexion of > 10°, dorsiflexion was 0° in 2 patients, plantar flexion was > 30° in 11 patients and < 20° in 1. With a mean functional score of 79.8, 4 patients with C3 fractures were reported as

Table 1. Data of the patients

<table>
<thead>
<tr>
<th>Number</th>
<th>Age/sex</th>
<th>Mechanism of injury</th>
<th>Open fracture type*</th>
<th>Presence/type of fibula fixation</th>
<th>Follow-up (months)</th>
<th>Ankle movement (dorsiflexion/plantar flexion)</th>
<th>AOFAS</th>
<th>Union time (months)</th>
<th>Ankle osteoarthritis level**</th>
<th>Complication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47/m</td>
<td>fall from height</td>
<td>1</td>
<td>plate</td>
<td>28</td>
<td>7/16°</td>
<td>65</td>
<td>6</td>
<td>4</td>
<td>Pin-track infection.</td>
</tr>
<tr>
<td>2</td>
<td>49/m</td>
<td>other</td>
<td>3a</td>
<td>plate</td>
<td>32</td>
<td>9/14°</td>
<td>56</td>
<td>11</td>
<td>3</td>
<td>Pin-track infection.</td>
</tr>
<tr>
<td>3</td>
<td>68/m</td>
<td>traffic accident</td>
<td>1</td>
<td>none</td>
<td>41</td>
<td>18/24°</td>
<td>86</td>
<td>5</td>
<td>1</td>
<td>malunion</td>
</tr>
<tr>
<td>4</td>
<td>29/m</td>
<td>mining accident</td>
<td>3a</td>
<td>K wire</td>
<td>26</td>
<td>0/13°</td>
<td>76</td>
<td>9</td>
<td>2</td>
<td>Pin-track infection.</td>
</tr>
<tr>
<td>5</td>
<td>49/m</td>
<td>traffic accident</td>
<td>1</td>
<td>plate</td>
<td>46</td>
<td>22/32°</td>
<td>92</td>
<td>5</td>
<td>1</td>
<td>none</td>
</tr>
<tr>
<td>6</td>
<td>43/m</td>
<td>traffic accident</td>
<td>2</td>
<td>plate</td>
<td>25</td>
<td>21/34°</td>
<td>90</td>
<td>5</td>
<td>1</td>
<td>none</td>
</tr>
<tr>
<td>7</td>
<td>38/f</td>
<td>traffic accident</td>
<td>1</td>
<td>none</td>
<td>27</td>
<td>19/28°</td>
<td>84</td>
<td>6</td>
<td>2</td>
<td>none</td>
</tr>
<tr>
<td>8</td>
<td>58/f</td>
<td>fall from height</td>
<td>1</td>
<td>K wire</td>
<td>25</td>
<td>21/36°</td>
<td>92</td>
<td>5</td>
<td>1</td>
<td>none</td>
</tr>
<tr>
<td>9</td>
<td>26/m</td>
<td>traffic accident</td>
<td>2</td>
<td>none</td>
<td>33</td>
<td>17/27°</td>
<td>78</td>
<td>6</td>
<td>2</td>
<td>Pin-track infection.</td>
</tr>
<tr>
<td>10</td>
<td>38/f</td>
<td>traffic accident</td>
<td>3a</td>
<td>K wire</td>
<td>29</td>
<td>10/25°</td>
<td>70</td>
<td>6</td>
<td>3</td>
<td>malunion</td>
</tr>
<tr>
<td>11</td>
<td>55/m</td>
<td>fall from height</td>
<td>3a</td>
<td>plate</td>
<td>42</td>
<td>11/23°</td>
<td>74</td>
<td>10</td>
<td>2</td>
<td>Pin-track infection.</td>
</tr>
<tr>
<td>12</td>
<td>67/f</td>
<td>traffic accident</td>
<td>1</td>
<td>none</td>
<td>44</td>
<td>18/28°</td>
<td>82</td>
<td>7</td>
<td>2</td>
<td>none</td>
</tr>
<tr>
<td>13</td>
<td>72/f</td>
<td>traffic accident</td>
<td>1</td>
<td>none</td>
<td>25</td>
<td>23/32°</td>
<td>90</td>
<td>5</td>
<td>1</td>
<td>none</td>
</tr>
<tr>
<td>14</td>
<td>43/m</td>
<td>traffic accident</td>
<td>2</td>
<td>plate</td>
<td>25</td>
<td>21/34°</td>
<td>90</td>
<td>5</td>
<td>1</td>
<td>none</td>
</tr>
</tbody>
</table>

*According to the Gustillo-Anderson Classification, **According to the Bargon et al. [11] criteria. (Grade 1: no osteophytes, no joint space narrowing; Grade 2: small osteophytes, no joint space narrowing; Grade 3: moderate osteophytes, joint space narrowing; Grade 4: large osteophytes, severe joint space narrowing)
acceptable. In the current study, the mean dorsiflexion was measured as 15.5° (range, 0°-23°) and plantar flexion as mean 26.14° (range, 13°-36°) and the mean AOFAS was 80.35 (range, 56-92). The ROM values and functional scores of the patients in the current study are consistent with literature. Bone et al. [22] stated that ankle ROM remaining at an acceptable level after Ilizarov external fixator treatment was associated with the distraction made to the joint by the fixator during treatment causing tension in the ligaments and prevents shortening in the ligaments. In 30 patients with high-energy tibial pilon fractures treated with Ilizarov external fixator by Osman et al. [17], arthrosis developed in the joint in 11 patients, but no information was given about the grade of arthrosis. Fırat et al. [23] compared the Ilizarov external fixator techniques of fixed to the ankle and jointed at the ankle in 34 patients operated on for tibial pilon fracture. Post-traumatic arthrosis was reported in 31.3% of the patients with Ilizarov external fixator jointed at the ankle and in 55.5% of the patients with the Ilizarov external fixator fixed at the ankle. Again, no information was given about the degree of arthrosis. Wysrc et al. [14] treated 20 of 38 patients with pilon fractures with external fixator combined with internal fixation using a minimal incision and while no osteoarthritic change was determined in only 1 patient, osteoarthritic changes were observed at a mild level in 6 patients, at an evident level in 8 and at a severe level in 4. Similarly, Guo et al. [24] applied external fixator combined with internal fixation with a minimal incision to 26 patients with Rüedi-Allgöwer type 3 fractures and reported osteoarthritic changes in all the patients. Calori et al. [1] reported that the osteoarthritic changes that developed following high-energy pilon fractures were associated with the cartilage damage that was created during the trauma and arthrosis could develop despite anatomic joint reconstruction obtained radiographically. Elsoe et al. [23] indicated that 35% of their patients had osteoarthritis at the ankle joint following a distal intra-articular fracture 12 months after frame removal. In the current study, osteoarthritic changes of varying degrees were seen in all patients and were graded.

The Limitations of the Study

Limitations of this study can be said to be that it was retrospective, that despite a sufficient number of patients with pilon fractures, a small number of patients had open AO-43C3 type fracture, and because there was no comparison with any other treatment option, there was insufficient statistical evaluation.

Conclusions

Although several techniques have been compared in the treatment of high-energy pilon fractures, there is no standard surgical technique that is applied. The results of this study have demonstrated that satisfactory results can be obtained with the Ilizarov external fixator passing the ankle in the permanent treatment of AO-43C3 type open tibial pilon fractures.

Authorship declaration

All authors listed meet the authorship criteria according to the latest guidelines of the International Committee of Medical Journal Editors, and all authors are in agreement with the manuscript.

Conflict of interest

The authors disclosed no conflict of interest during the preparation or publication of this manuscript.

Financing

The authors disclosed that they did not receive any grant during conception or writing of this study.

References