Prevalence of Gastrointestinal Parasites in Water Buffalo (Bubalus bubalis) Calves Raised with Cattle in Smallholder Farming System in the Northwest of Iran

Mousa TAVASSOLI1, Bahram DALIR-NAGHADEH2, Sima VALIPOUR3, Mina MAGHSOUDLO3

1Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
2Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
3Graduate student, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran


Abstract

The objective of this study was to investigate the prevalence of gastrointestinal parasitic infection in buffalo calves in Northwest of Iran. Fecal samples of 317 buffalo calves under 9 months of age (155 male and 162 female) were collected from villages around Urmia, Northwest of Iran. Centrifugal flotation technique using saturated zinc sulphate solution and sedimentation methods was used to detect protozoa and helminthes infections. The modified Ziehl-Neelsen technique was used for determining Cryptosporidium spp. infection. Eight Eimeria species oocysts were identified in 112 (35.3%) out of the 317 buffalo calves. Eimeria zuernii had the highest prevalence (23.3%) followed by E. bovis (15.1%), E. ellipsoidalis (7.3%), E. bareillyi (2.5%), E. bukidnonensis (2.2%), E. ovoidalis (1.3%), E. cylindrical (0.9%), E. auburnensis (0.6%). No cysts of Giardia spp. were detected. The oocysts of Cryptosporidium spp. were detected in 8 (2.5%) buffalo calves. Twenty-three buffalo calves (7.3%) were positive for Toxocara vitulorum eggs. No clinical finding was observed in infected buffalo. In conclusion, Eimeria spp., Cryptosporidium spp and T. vitulorum are relatively common in buffalo calves and buffalo should be considered as a potential source of infection to other animal species.

Keywords: Eimeria, Cryptosporidium, Toxocara vitulorum, Buffalo Calves

Öz

Bu çalışmanın amacı, İran’in kuzeýbatı bölgesindeki küçük çaplı yetiştiricilik sisteminde sığırlar ile birlikte yetiştirilen manda (Bubalus Bubalis) yavrularında gastrointestinal parazitlerin prevalansı araştırmasıdır. 9 ayda küçük 317 manda yavruma (155 erkek ve 162 dişi) ait dışkı örnekleri, İran’in kuzeýbatısında bulunan Urmia bölgesinde etrafındaki köylerden toplanmıştır. Protozoon ve helmintin enfeksiyonlarını belirlemek için, sualtın ve sedimantasyon yöntemleri kullanılmıştır. Çoçuk ve elipsoidalis Eimeria türleri, en yüksek prevalansı (23.3%) izlemiştir. Bu türlerden en prevalansı E. zuernii (23.3%), E. bovis (15.1%), E. ellipsoidalis (7.3%), E. bareillyi (2.5%), E. bukidnonensis (2.2%), E. ovoidalis (1.3%), E. cylindrical (0.9%), E. auburnensis (0.6%) türlerine ait oocistler tespit edilmiştir. Giardia spp. tespit edilmemiştir. Bu çalıﬂmasının yararlanarak, manda yavrularında görülen en prevalanslı parazit Eimeria türleridir.

Anahtar kelimeler: Eimeria, Cryptosporidium, Toxocara vitulorum, Manda Calves

Address for Correspondence: Mousa TAVASSOLI - E-mail: m.tavassoli@urmia.ac.ir

Received Date: 31 December 2016 - Accepted Date: 04 December 2017 - DOI: 10.5152/actavet.2018.003
Fecal samples were collected from 317 male (155) and female (162) buffalo calves (water buffalo under 9 months old). The buffalo calves were randomly selected from villages around Urmia, northwest Iran. The area of the study is one of the main buffalo raising regions and currently has the largest population of water buffalo in Iran. Approximately 808,300 water buffalo are raised in this region. In this area, buffalo are raised by farmers for milk, meat and hide production. The area of the study is semi-humid, with an average yearly rainfall of 350 mm, maximum monthly temperature of 28.3°C in August and minimum monthly temperature of -5°C in January. The buffalo were allowed to graze in the local ranges or beside the orchard gardens from spring to mid-autumn during the day and kept indoors at nights. Calves are left to run with their mothers until weaned at 3 to 6 months old. Young and older buffalo were allowed to mix freely and sometimes with other farm livestock, in particular cattle, and occasionally, with sheep and goats. No supplementary feeding is provided and water is available from rivers, portable piping, wells and sometimes pools of rainwater on the ground or stagnant water. During the winter and cold seasons the buffalo are usually enclosed indoors (in roofed stables or barns) all day and night usually with cattle in groups of 5 to 20 and fed with straw, dried grasses and alfalfa. In this housing system, the animals are usually bedded with straw or dried cow dung which is usually cleaned and refreshed once a day or every other day. Only, rarely strategic and regular anti-parasitic medications are administered to the buffalo.

Out of a total of 317 sampled buffalo calves, 112 (35.3%) were found positive for coccidian oocysts. Identification of species showed 8 Eimeria species. Eimeria zuernii had the highest (23.3%) and E. auburnensis had the lowest (0.6 %) prevalence.

Materials and Methods

Fecal samples were collected from 317 male (155) and female (162) buffalo calves (water buffalo under 9 months old). The buffalo calves were randomly selected from villages around Urmia, northwest Iran. The area of the study is one of the main buffalo raising regions and currently has the largest population of water buffalo in Iran. Approximately 808,300 water buffalo are raised in this region. In this area, buffalo are raised by farmers for milk, meat and hide production. The area of the study is semi-humid, with an average yearly rainfall of 350 mm, maximum monthly temperature of 28.3°C in August and minimum monthly temperature of -5°C in January. The buffalo were allowed to graze in the local ranges or beside the orchard gardens from spring to mid-autumn during the day and kept indoors at nights. Calves are left to run with their mothers until weaned at 3 to 6 months old. Young and older buffalo were allowed to mix freely and sometimes with other farm livestock, in particular cattle, and occasionally, with sheep and goats. No supplementary feeding is provided and water is available from rivers, portable piping, wells and sometimes pools of rainwater on the ground or stagnant water. During the winter and cold seasons the buffalo are usually enclosed indoors (in roofed stables or barns) all day and night usually with cattle in groups of 5 to 20 and fed with straw, dried grasses and alfalfa. In this housing system, the animals are usually bedded with straw or dried cow dung which is usually cleaned and refreshed once a day or every other day. Only, rarely strategic and regular anti-parasitic medications are administered to the buffalo.

The samples were collected directly from the rectum into disposable plastic bags and transported in a cool box on ice to the laboratory. For each sample, the sampling date, the animals’ identification, age, sex, health status and fecal consistency at the time of sampling were recorded.

All samples were immediately transferred to the laboratory and examined by the flotation method using a zinc sulfate solution and sedimentation methods at the parasitological diagnostic laboratory of the Faculty of Veterinary Medicine, Urmia University. Each observed egg or oocyst was identified by using their morphological characteristics described by Levine (1985) and Soulsby (1982). Identification of Eimeria species was carried out on the faecal samples and those with at least 50 oocyst per gram were used for further examination, after sporulation in 2.5% potassium dichromate at room temperature. They were identified on the basis of the morphology of oocyst and sporocyst, according to Levine (1985), the characteristics of the identified oocyst are showed in Table 1 and 2. Measurements were made using a calibrated ocular micrometer under × 40 magnification. Faecal samples were further examined for Giardia detection under oil immersion.

For diagnosis of Cryptosporidium spp., fecal smears were prepared on glass slides; air dried and stained using a modified Ziehl-Neelsen technique. Measurements were made using a calibrated ocular micrometer under × 100 magnification.

Results

Out of a total of 317 sampled buffalo calves, 112 (35.3%) were found positive for coccidian oocysts. Identification of species showed 8 Eimeria species. Eimeria zuernii had the highest (23.3%) and E. auburnensis had the lowest (0.6 %) prevalence.

Introduction

Parasitism is one of the major problems affecting ruminants (Gupta et al., 1978). However, regarding ruminants, most of the data on the prevalence and distribution of parasites are on cattle. In terms of economic loss, coccidiosis is a widespread, serious disease affecting pre-weaned and recently weaned animals, especially in insanitary, stressful and/or crowded conditions. The disease may result in death, especially in young animals and may cause considerable economic losses in farm animals worldwide (Soulsby, 1982; Levine, 1985). Apart from Eimeria azerbaidjanica and E. thianethi which are specific to the buffalo, various cattle Eimeria species have also been reported to prevail in buffalo (Patnaik and Pandey, 1965; Gundrans and More, 1999). Fatal cases of coccidiosis have been reported in 10 buffalo calves infected with E. bareillyi.

Giardia spp. and Cryptosporidium spp. are common intestinal protozoan parasites that infect mammals including humans (Thompson and Monis, 2004; Appelbee et al., 2005).

Toxocara vitulorum is the largest intestinal nematode of bovidae including buffalo (Soulsby, 1982). This parasite has been reported to cause heavy economic losses to the livestock industry (Baruah et al., 1979). In some countries, the heavy burden of adult T. vitulorum on young buffalo calves resulted in a high mortality rate and economic losses (Lau, 1987).

There is a paucity of information on the prevalence, diversity and abundance of parasites of buffalo calves. Little is known about the prevalence of gastrointestinal parasites (in particular on protozoan pathogens) of buffalo calves, the extent of shedding of these parasites into the environment and the role of buffalo in the transmission of infection to other species. This study was conducted to determine the prevalence of certain gastrointestinal parasites in buffalo calves and the identification of the diversity and abundance of Eimeria spp. in northwest Iran, an area which has the largest population of water buffalo in the country.
Table 1. Morphology of Eimeria species oocyst identified from infected buffalo from northwest Iran

<table>
<thead>
<tr>
<th>Eimeria Species</th>
<th>Size of Oocyst (µm)</th>
<th>Size of sporocyst (µm)</th>
<th>Valve</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. zuernii</td>
<td>12×10</td>
<td>7×11</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>E. bovis</td>
<td>23×17</td>
<td>13×5</td>
<td>-</td>
<td>Ovoid</td>
</tr>
<tr>
<td>E. ellipsoidalis</td>
<td>12×10</td>
<td>11×5</td>
<td>-</td>
<td>Ellipsoidal</td>
</tr>
<tr>
<td>E. bareillyi</td>
<td>24×15</td>
<td>15×6</td>
<td>-</td>
<td>Pear shaped</td>
</tr>
<tr>
<td>E. ovoidalis</td>
<td>34×26</td>
<td>12×9</td>
<td>+</td>
<td>Radially striated</td>
</tr>
<tr>
<td>E. ellipsoidalis</td>
<td>32×20</td>
<td>14×8</td>
<td>+</td>
<td>Ovoid</td>
</tr>
<tr>
<td>E. cylindrical</td>
<td>16×12</td>
<td>12×4</td>
<td>-</td>
<td>Ellipsoidal</td>
</tr>
<tr>
<td>E. auburnensis</td>
<td>32×19</td>
<td>15×6</td>
<td>+</td>
<td>Ovoid</td>
</tr>
</tbody>
</table>

Table 2. The number of positive samples and relative frequency (%) of Eimeria spp, Cryptosporidium spp and Toxocara vitulorum infection in fecal samples of 317 buffalo calves (1 month old to 9 months old) in the Urmia district, Iran

<table>
<thead>
<tr>
<th>Parasites</th>
<th>No. of positive samples (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. zuernii</td>
<td>74 (23.3)</td>
</tr>
<tr>
<td>E. bovis</td>
<td>48 (15.1)</td>
</tr>
<tr>
<td>E. ellipsoidalis</td>
<td>23 (7.3)</td>
</tr>
<tr>
<td>E. bareillyi</td>
<td>8 (2.5)</td>
</tr>
<tr>
<td>E. bukidnonensis</td>
<td>7 (2.2)</td>
</tr>
<tr>
<td>E. ovoidalis</td>
<td>4 (1.3)</td>
</tr>
<tr>
<td>E. cylindrical</td>
<td>3 (0.9)</td>
</tr>
<tr>
<td>E. auburnensis</td>
<td>2 (0.6)</td>
</tr>
<tr>
<td>Cryptosporidium spp</td>
<td>8 (2.5)</td>
</tr>
<tr>
<td>T. vitulorum</td>
<td>23 (7.3)</td>
</tr>
</tbody>
</table>

relative frequency of infection among the sampled buffalo calves. The number and relative frequency of samples positive for various Eimeria species are given in Table 1. Sixty-two samples (16.7%) were infected with a single Eimeria species, 34 (10.7%), 13 (4.1%), and 3 (0.9%) of calves had mixed infections with 2, 3 and 4 species, respectively. The number of oocyst per gram (OPG) ranged from 1-900. Of 317 buffalo calves, 8 (2.5%) were found to be infected with Cryptosporidium spp. No cysts for Giardia spp. were detected in any of the sampled buffalo. Concerning T. vitulorum, 23 out of 317 (7.3%) samples were detected positive for this nematode. The results are summarized in Table 2.

Discussion

In the present study, E. zuernii, E. bovis and E. ellipsoidalis were the most prevalent species. Similar findings have been reported from South Africa, Tanzania and Kenya (Munyua and Ngotho, 1989; Chibunda et al., 1996; Matjila and Penzhorn, 2002). Six out of 17 of the recorded Eimeria species that infect the buffalo (E. ankarensis, E. auburnensis, E. bovis, E. brasilienisis, E. bukidnonensis, E. canadensis, E. cylindrica, E. ellipsoidalis, E. subspherica, E. wyomingensis, and E. zuernii) are cattle-originated (Gundrans and More, 1999; Penzhorn, 2000; Ribeiro et al., 2000). In the present study, a total of 8 Eimeria species were found in buffalo calves, of which 2 were specific to the water buffalo (E. ovoidalis and E. bareillyi), and the remaining 6 were of cattle origin. Workers have studied the prevalence of infection to Eimeria species in cattle of Iran. Esami and Hosseini (1989) reported the prevalence of coccidian species in adult cattle 18.6% and in young calves 20.5%. In a study performed on water buffalo in Turkey 124 out of 130 water buffalo (95.4%) were found to be infected with Eimeria species (Sayin, 1968). In another study from Turkey, the rate of infection to these parasite was only 2% (1 out of 50 water buffalo) (Sayin, 1973). Nalbantoglu et al. (2007) from Turkey identified 78 out of 104 water buffalo (75%) infected with 11 Eimeria species as follows: E. zuernii, E. bovis, E. ellipsoidalis, E. bareillyi, E. cylindrica, E. canadensis, E. auburnensis, E. brasilienisis, E. ankarensis, E. subspherica, E. alabamensis. High prevalence of Eimeria spp. in buffalo indicates that this parasite found suitable conditions in buffalo to complete their life cycle. Therefore, it appears that water buffalo and cattle may be considered as reservoirs of the parasite for each other, the point which should be addressed in any control program in particular in regions where the cattle and buffalo were raised in close proximity.

No clinical symptom related to coccidiosis was observed in our study in the infected buffalo calves. However, clinical signs and fatality have been reported from affected buffalo calves by other studies. In Maharashtra state, India, 10 buffalo calves died of coccidiosis. At necropsy, they were found to be infected with various stages of E. bareillyi (Shastri and Krishnamurthi, 1975).

In Iran studies have been conducted in cattle reporting on the prevalence of Cryptosporidium spp. from 3.8% to 42.8% (Radfar et al., 2006; Azami, 2007; Fotouhi Ardakani, 2008). In a study in Italy performed in 90 buffalo farms with 347 fecal samples of buffalo calves 24.4% were positive for C. parvum (Rinaldi et al., 2007). In Tanzania, 22.0% (Mtambo et al., 1997). In Brazil, 8.3% of diarrhoeic and 10.3% of non-diarrhoeic buffalo calves were infected with C. parvum (Riberio et al., 2000). A study by Santin et al. (2004) identified C. parvum in only 1% of the samples from post-weaned dairy calves. The reported prevalence of Cryptosporidium spp. Infection in the above-mentioned studies were relatively low. In the
present study, 8 healthy buffalo calves (2.5%) were found to be shedding oocysts of Cryptosporidium spp in feces. Cryptosporidium spp. are common parasites in humans, domestic animals and wild vertebrates (Fayer, 2010). Cattle have been reported as the primary hosts for Cryptosporidium species and pre-weaned calves are major hosts of C. parvum (Santin et al., 2004). However, buffalo calves may also pose a risk of zoonotic transmission to humans and should be considered as a potential source of infection to other animal species and may represent a potential risk for the contamination of the surface waters.

There are very limited studies on the epidemiology of Giardia spp. in buffalo. The prevalence of G. duodenalis is quite high in young calves (O Handley, 1999; Huetink et al., 2001). Though, very few reports on the prevalence of this parasite in buffalo calves are available. In Italy, 18.1% of water buffalo calves had antigens of G. duodenalis in their fecal samples. In addition, in 30.0% of buffalo farms the presence of copro-antigens of G. duodenalis has been detected (Rinaldi et al., 2007). However, Rinaldi et al. (2007) used different diagnostic techniques (detection of copro-antigens rather than detection of Giardia cysts) and different epidemiological approaches (geographical information system) in their study and it is difficult to compare their findings with those reported by others. In another study using molecular analysis of the Cryptosporidium small subunit ribosomal DNA gene and of the Giardia β-giardin gene, 26.3% and 14.0% of fecal samples from buffalo calves were positive for Giardia spp. and Cryptosporidium spp., respectively (Caccio et al., 2007). A positive association between the positivity to G. duodenalis in buffalo calves and the presence of sheep on farms has been observed, indicating that transmission between sheep and water buffalo can occur (Rinaldi et al., 2007; Caccio et al., 2007). Workers in Italy have concluded that water buffalo can contribute to environmental contamination with oocysts of Cryptosporidium spp. and cysts of Giardia spp. (Caccio et al., 2007). In the region of the present study, Dalir-Naghadeh et al. (2008) found Giardia cysts in feces of 35.3% of diarrheic and 8% of non-diarrheic calves. However, we did not find Giardia cysts in the feces of buffalo calves. It seems that the buffalo is not a suitable host for Giardia spp. In the area of this study, usually buffalo use common ranges with cattle, and occasionally, with sheep and goats. Further studies are needed to investigate the status of infection to Giardia spp. in buffalo, cattle, sheep and goats on farms and ranges where a mixed population of livestock are kept or grazed.

T. vitulorum is found mostly in tropical and subtropical climates in very young calves and buffalo calves; however, the prevalence of this parasite has greatly increased recently in countries like the USA and emerged in countries like the Netherlands (Davila et al., 2010; Borgsteede et al., 2012). Several studies were performed on the rate of T. vitulorum infection in buffalo calves. T. vitulorum eggs were detected in fecal samples of 23% of 99 buffalo calves (Samizadeh-Yazd et al., 1981). In another study, the rate of infection to T. vitulorum in buffalo calves was 15.8% (Tavassoli, 1999). Infection with this parasite has been reported in more than 75% of the calves examined in Bangladesh, Burma, Ceylon, India, and Nigeria, 66% in Egypt and 58% in Burundi and Thailand (Selim et al., 1966; Thienpont and Kedeyser, 1981; Srikitjakaran et al., 1987). In the present study, the prevalence of T. vitulorum infection (7.3%) was lower than those from earlier studies conducted in Iran and the above-mentioned countries. The increased usage of anthelmintic by farmers in recent years may be among the probable cause of this finding. Calves become infected by ingesting infected larvae from an infected cow’s milk. The larvae are present in greatest numbers in the colostrum 2-5 d after calving. Mature worms are present in the intestine of ten-day-old caland eggs are passed by 3 weeks of age. Adult worms are expelled by the age of 5 months (Radostits et al., 2007). Since T. vitulorum affects mainly water buffalo, to prevent further infections and dissemination of this parasite, introduction of buffalo, in particular pregnant or recently calved buffalo and calves less than 6 months of age, from endemic areas into other regions should be limited. Also, it is recommended that all young calves (less than 6 months of age) be treated with an effective anthelmintic to control this parasite.

In conclusion, the present study showed that various species of Eimeria, Cryptosporidium spp and T. vitulorum are relatively common in buffalo calves. Cross-species transmission of some parasites can occur between water buffalo and other animal species sharing the same ranges or housing. Therefore, buffalo can contaminate, pastures, rangelands and forage and they should be considered as a potential reservoir and a source of infection to other species, including humans. Further detailed studies are needed to evaluate the risk factors predisposing buffalo gastrointestinal parasitic infections.

Acknowledgements:: Financial support from the Faculty of Veterinary Medicine (Urmia University-Iran) is fully appreciated.

References


Caccio, S.M., Rinaldi, L., Cringoli, G., Condoleo, R., Pozio, E., 2007. Molecular identification of *Cryptosporidium parvum* and *Giardia duodenalis* in the Italian water buffalo (*Bubalus bubalis*). Veterinary Parasitology 150(1-2), 146-149. [CrossRef]


Fayer, R., 2010. Taxonomy and species delimitation in *Cryptosporidium*. Experimental Parasitology 124, 90-97. [CrossRef]


Gundrans, R.S., More, S.J., 1999. Health and growth of water-buffalo calves in Nueva Ecija, the Philippines. Preventive Veterinary Medicine 40, 87-100. [CrossRef]


Jarvis, H.W., 2001. *Giardia* spp. and *Cryptosporidium* spp Oocyts in cattle and wild life in Morogoro region, Tanzania. Preventive Veterinary Medicine 31(3-4), 185-900. [CrossRef]


Sayin, F., 1968. The sporulated oocysts of *Eimeria ankarrensis* sp. and of other species of *Eimeria* of buffalo in Turkey and transmission of four species of *Eimeria* from buffalo to cow calves. Ankara University Veterinary Fakulty Dergici 15, 282-300.


Thompson, R.C., Monis, P.T., 2004. Variation in Giardia: implications for taxonomy and epidemiology. Advanced Parasitology 58, 69-137. [CrossRef]