Abstract: The purpose of this paper is to study anti-invariant Riemannian submersions from Kenmotsu manifolds onto Riemannian manifolds. Several fundamental results in this respect are proved. The integrability of the distributions and the geometry of foliations are investigated. We proved the nonexistence of (anti-invariant) Riemannian submersions from Kenmotsu manifolds onto Riemannian manifolds such that the characteristic vector field ξ is a vertical vector field. We gave a method to get horizontally conformal submersion examples from warped product manifolds onto Riemannian manifolds. Furthermore, we presented an example of anti-invariant Riemannian submersions in the case where the characteristic vector field ξ is a horizontal vector field and an anti-invariant horizontally conformal submersion such that ξ is a vertical vector field.

Key words: Riemannian submersion, conformal submersion, Warped product, Kenmotsu manifold, Anti-invariant Riemannian submersion

1. Introduction

Riemannian submersions between Riemannian manifolds were studied by O’Neill [16] and Gray [9]. Riemannian submersions have several applications in mathematical physics. Indeed, Riemannian submersions have their applications in the Yang–Mills theory [4, 27], Kaluza–Klein theory [5, 10], supergravity and superstring theories [11, 28], etc. Later such submersions were considered between manifolds with differentiable structures; see [8]. Furthermore, we have the following submersions: semi-Riemannian submersion and Lorentzian submersion [8], Riemannian submersion [9], slant submersion [7, 23], almost Hermitian submersion [26], contact-complex submersion [13], quaternionic submersion [12], almost h-slant submersion and h-slant submersion [19], semi-invariant submersion [25], h-semi-invariant submersion [20], etc.

Compared with the huge literature on Riemannian submersions, it seems that there are necessary new studies in anti-invariant Riemannian submersions; an interesting paper connecting these fields is [22]. Şahin [22] introduced anti-invariant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds. Later, he suggested to investigate anti-invariant Riemannian submersions from almost contact metric manifolds onto Riemannian manifolds [24]. The present work is another step in this direction, more precisely from the point of view of anti-invariant Riemannian submersions from Kenmotsu manifolds. Our work is structured as follows: Section 2 is focused on basic facts for Riemannian submersions and Kenmotsu manifolds. The third section is concerned with definition of anti-invariant Riemannian submersions from

*Correspondence: iremkupeli@uludag.edu.tr

2010 AMS Mathematics Subject Classification: Primary 53C25, 53C43, 53C55; Secondary 53D15.
Kenmotsu manifolds onto Riemannian manifolds. We investigate the integrability of the distributions and the geometry of foliations. We proved the nonexistence of (anti-invariant) Riemannian submersions from Kenmotsu manifolds onto Riemannian manifolds such that the characteristic vector field ξ is a vertical vector field. The last section is devoted to an example of anti-invariant Riemannian submersions in the case where the characteristic vector field ξ is a horizontal vector field and an anti-invariant horizontally conformal submersion such that ξ is a vertical vector field.

2. Preliminaries

In this section we recall several notions and results that will be needed throughout the paper.

Let M be a $(2m+1)$-dimensional connected differentiable manifold [8] endowed with an almost contact metric structure (ϕ, ξ, η, g) consisting of a $(1,1)$-tensor field ϕ, a vector field ξ, a 1-form η, and a compatible Riemannian metric g satisfying

$$\phi^2 = -I + \eta \otimes \xi, \quad \phi \xi = 0, \quad \eta \circ \phi = 0, \quad \eta(\xi) = 1,$$
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$
$$g(\phi X, Y) + g(X, \phi Y) = 0, \quad \eta(X) = g(X, \xi),$$

for all vector fields $X, Y \in \chi(M)$.

An almost contact metric manifold M is said to be a Kenmotsu manifold [14] if it satisfies

$$(\nabla_X \phi)Y = g(\phi X, Y)\xi - \eta(Y)\phi X,$$

where ∇ is the Levi-Civita connection of the Riemannian metric g. From the above equation it follows that

$$\nabla_X \xi = X - \eta(X)\xi,$$
$$\nabla_X \eta = g(X, Y) - \eta(X)\eta(Y).$$

A Kenmotsu manifold is normal (that is, the Nijenhuis tensor of ϕ equals $-2d\eta \otimes \xi$) but not Sasakian. Moreover, it is also not compact since from equation (2.5) we get $\text{div} \xi = 2m$. Finally, the fundamental 2-form Φ is defined by $\Phi(X, Y) = g(X, \phi Y)$. In [14], Kenmotsu showed:

(a) that locally a Kenmotsu manifold is a warped product $I \times f N$ of an interval I and a Kaehler manifold N with warping function $f(t) = se^t$, where s is a nonzero constant.

(b) that a Kenmotsu manifold of constant ϕ-sectional curvature is a space of constant curvature -1 and so it is a locally hyperbolic space.

Now we will give a well-known example, which is a Kenmotsu manifold on \mathbb{R}^5 by using (a).

Example 1 We consider $M = \{(x_1, x_2, y_1, y_2, z) \in \mathbb{R}^5 : z \neq 0\}$. Let η be a 1-form defined by

$$\eta = dz.$$

The characteristic vector field ξ is given by $\frac{\partial}{\partial z}$ and its Riemannian metric g and tensor field ϕ are given by

$$g = e^{2z} \sum_{i=1}^{2}((dx_i)^2 + (dy_i)^2) + (dz)^2, \quad \phi = \begin{pmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$
This gives a Kenmotsu structure on \(M \). The vector fields \(E_1 = e^{-z} \frac{\partial}{\partial y_1}, \ E_2 = e^{-z} \frac{\partial}{\partial y_2}, \ E_3 = e^{-z} \frac{\partial}{\partial z}, \ E_4 = e^{-z} \frac{\partial}{\partial z^2}, \) and \(E_5 = \xi \) form a \(\phi \)-basis for the Kenmotsu structure. On the other hand, it can be shown that \(M(\phi, \xi, \eta, g) \) is a Kenmotsu manifold.

Let \((M, g_M) \) be an \(m \)-dimensional Riemannian manifold and let \((N, g_N) \) be an \(n \)-dimensional Riemannian manifold. A Riemannian submersion is a smooth map \(F : M \to N \) that is onto and satisfying the following axioms:

1. \(F \) has maximal rank.
2. The differential \(F_* \) preserves the lengths of horizontal vectors.

The fundamental tensors of a submersion were defined by O’Neill [16, 17]. They are \((1, 2)\)-tensors on \(M \), given by the following formulas:

\[
\begin{align*}
T(E, F) & = T_E F = \mathcal{H}\nabla_V E F + \nabla_V E \mathcal{H} F, \\
\mathcal{A}(E, F) & = \mathcal{A}_E F = \nabla_{\mathcal{H} E} F + \mathcal{H} \nabla_{\mathcal{H} E} F,
\end{align*}
\]

for any vector fields \(E \) and \(F \) on \(M \). Here \(\nabla \) denotes the Levi-Civita connection of \(g_M \). These tensors are called integrability tensors for the Riemannian submersions. Note that we denote the projection morphism on the distributions \(\ker F_* \) and \((\ker F_*)^\perp \) by \(\mathcal{V} \) and \(\mathcal{H} \), respectively.

If the second condition \(S2 \) can be changed as \(F_* \) restricted to horizontal distribution of \(F \) is a conformal mapping, we get the **horizontally conformal submersion** definition [18]. In this case the second condition can be written in the following way:

\[
g_M(X, Y) = e^{2\lambda(p)} g_N(F_* X, F_* Y), \quad \forall p \in M, \forall X, Y \in \Gamma((\ker F_*)^\perp), \quad \exists \lambda \in C^\infty(M). \tag{2.9}
\]

The warped product \(M = M_1 \times_f M_2 \) of two Riemannian manifolds \((M_1, g_1) \) and \((M_2, g_2) \), is the Cartesian product manifold \(M_1 \times M_2 \), endowed with the warped product metric \(g = g_1 + fg_2 \), where \(f \) is a positive function on \(M_1 \). More precisely, the Riemannian metric \(g \) on \(M_1 \times_f M_2 \) is defined for pairs of vector fields \(X, Y \) on \(M_1 \times M_2 \) by

\[
g(X, Y) = g_1(\pi_1(X), \pi_1(Y)) + f^2(\pi_2(X), \pi_2(Y)),
\]

where \(\pi_1 : M_1 \times M_2 \to M_1; (p, q) \to p \) and \(\pi_2 : M_1 \times M_2 \to M_2; (p, q) \to q \) are the canonical projections. We recall that these projections are submersions. If \(f \) is not a constant function of value 1, one can prove that the second projection is a conformal submersion whose vertical and horizontal spaces at any point \((p, q) \) are respectively identified with \(T_pM_1, T_qM_2 \).

Let \(\mathcal{L}(M_1) \) and \(\mathcal{L}(M_2) \) be the set of lifts of vector fields on \(M_1 \) and \(M_2 \) to \(M_1 \times_f M_2 \), respectively. We use the same notation for a vector field and for its lift. We denote the Levi-Civita connection of the warped product metric tensor of \(g \) by \(\nabla \).

Proposition 1 [17] \(M = M_1 \times_f M_2 \) be a warped Riemannian product manifold with the warping function \(f \) on \(M_1 \). If \(X_1, Y_1 \in \mathcal{L}(M_1) \) and \(X_2, Y_2 \in \mathcal{L}(M_2) \), then

(i) \(\nabla_{X_1} Y_1 \) is the lift of \(\nabla_{X_1} Y_1 \),

(ii) \(\nabla_{X_1} X_2 = \nabla_{X_2} X_1 = (X_1 f/f) X_2 \),

(iii) nor \(\nabla_{X_2} Y_2 = -(g(X_2, Y_2)/f) \text{grad} f \).
(iv) $\tan \nabla_{X_2}Y_2 \in \mathcal{L}(M_2)$ is the lift of $\nabla^2_{X_2}Y_2$, where ∇^1 and ∇^2 are Riemannian connections on M_1 and M_2, respectively.

Now we will introduce the following proposition ([6], pp. 86) for Subsection 3.2.

Proposition 2 If ϕ is a submersion of N onto N_1 and if $\psi : N_1 \rightarrow N_2$ is a differentiable function, then the rank of $\psi \circ \phi$ at p is equal to the rank of ψ at $\phi(p)$.

The following lemmas are well known from [16, 17]:

Lemma 1 For any U, W vertical and X, Y horizontal vector fields, the tensor fields \mathcal{T} and \mathcal{A} satisfy

\begin{align}
\text{i)} & \quad \mathcal{T}_U W = \mathcal{T}_W U, \\
\text{ii)} & \quad \mathcal{A}_X Y = -\mathcal{A}_Y X - \frac{1}{2}V[X, Y].
\end{align}

It is easy to see that \mathcal{T} is vertical, $\mathcal{T}_E = \mathcal{T}_{VE}$, and \mathcal{A} is horizontal, $\mathcal{A} = \mathcal{A}_{HE}$.

For each $q \in N$, $F^{-1}(q)$ is an $(m - n)$-dimensional submanifold of M. The submanifolds $F^{-1}(q)$ are called fibers. A vector field on M is called vertical if it is always tangent to fibers. A vector field on M is called horizontal if it is always orthogonal to fibers. A vector field X on M is called basic if X is horizontal and F-related to a vector field X_* on N, i.e., $F_*X_p = X_{*F(p)}$ for all $p \in M$.

Lemma 2 Let $F : (M, g_M) \rightarrow (N, g_N)$ be a Riemannian submersion. If X, Y are basic vector fields on M, then

\begin{align}
\text{i)} & \quad g_M(X, Y) = g_N(X_*, Y_*) \circ F, \\
\text{ii)} & \quad \mathcal{H}[X, Y] \text{ is basic and } F\text{-related to } [X_*, Y_*], \\
\text{iii)} & \quad \mathcal{H}(\nabla_X Y) \text{ is a basic vector field corresponding to } \nabla^*_{X_*}Y_* \text{ where } \nabla^* \text{ is the connection on } N, \\
\text{iv)} & \quad \text{for any vertical vector field } V, [X, V] \text{ is vertical.}
\end{align}

Moreover, if X is basic and U is vertical, then $\mathcal{H}(\nabla_U X) = \mathcal{H}(\nabla_X U) = \mathcal{A}_X U$. On the other hand, from (2.7) and (2.8) we have

\begin{align}
\nabla_V W & = \mathcal{T}_V W + \check{\nabla}_V W, \\
\nabla_V X & = \mathcal{H}\nabla_V X + \check{\nabla}_V X, \\
\nabla_X V & = \mathcal{A}_X V + \check{\nabla}_X V, \\
\nabla_X Y & = \mathcal{H}\nabla_X Y + \mathcal{A}_X Y,
\end{align}

for $X, Y \in \Gamma((\ker F_*)^\perp)$ and $V, W \in \Gamma(\ker F_*)$, where $\check{\nabla}_V W = \check{\nabla}_V W$.

Note that \mathcal{T} acts on the fibers as the second fundamental form of the submersion and restricted to vertical vector fields and it can be easily seen that $\mathcal{T} = 0$ is equivalent to the condition that the fibers are totally geodesic. A Riemannian submersion is called a Riemannian submersion with totally geodesic fibers if \mathcal{T} vanishes identically. Let $U_1, ..., U_{m-n}$ be an orthonormal frame of $\Gamma(\ker F_*)$. Then the horizontal vector field $H = \frac{1}{m-n} \sum_{j=1}^{m-n} \mathcal{T}_{U_j} U_j$ is called the mean curvature vector field of the fiber. If $H = 0$, then the Riemannian
submersion is said to be minimal. A Riemannian submersion is called a Riemannian submersion with totally umbilical fibers if

$$ T_U W = g_M(U, W)H, $$

(2.16)

for $U, W \in \Gamma(\ker F_*)$. For any $E \in \Gamma(TM)$, T_E and A_E are skew-symmetric operators on $(\Gamma(TM), g_M)$ reversing the horizontal and the vertical distributions. By Lemma 1, horizontal distribution \mathcal{H} is integrable if and only if $A = 0$. For any $D, E, G \in \Gamma(TM)$, one has

$$ g(T_D E, G) + g(T_D G, E) = 0 $$

(2.17)

and

$$ g(A_D E, G) + g(A_D G, E) = 0. $$

(2.18)

Finally, we recall the notion of harmonic maps between Riemannian manifolds. Let (M, g_M) and (N, g_N) be Riemannian manifolds and suppose that $\varphi : M \to N$ is a smooth map between them. Then the differential φ_* of φ can be viewed as a section of the bundle $\text{Hom}(TM, \varphi^{-1}TN) \to M$, where $\varphi^{-1}TN$ is the pullback bundle that has fibers $(\varphi^{-1}TN)_p = T_{\varphi(p)}N, \ p \in M$. $\text{Hom}(TM, \varphi^{-1}TN)$ has a connection ∇ induced from the Levi-Civita connection ∇^M and the pullback connection. Then the second fundamental form of φ is given by

$$ (\nabla \varphi_*)(X, Y) = \nabla^M_X \varphi_*(Y) - \varphi_*(\nabla^N_X Y), $$

(2.19)

for $X, Y \in \Gamma(TM)$, where ∇^φ is the pullback connection. It is known that the second fundamental form is symmetric. If φ is a Riemannian submersion, it can be easily proved that

$$ (\nabla \varphi_*)(X, Y) = 0, $$

(2.20)

for $X, Y \in \Gamma((\ker F_*)^\perp)$. A smooth map $\varphi : (M, g_M) \to (N, g_N)$ is said to be harmonic if $\text{trace}(\nabla \varphi_*) = 0$. On the other hand, the tension field of φ is the section $\tau(\varphi)$ of $\Gamma(\varphi^{-1}TN)$ defined by

$$ \tau(\varphi) = \text{div}_{\varphi_*} = \sum_{i=1}^m (\nabla \varphi_*)(e_i, e_i), $$

(2.21)

where $\{e_1, ..., e_m\}$ is the orthonormal frame on M. Then it follows that φ is harmonic if and only if $\tau(\varphi) = 0$, (for details, see [2]).

Let g be a Riemannian metric tensor on the manifold $M = M_1 \times M_2$ and assume that the canonical foliations D_{M_1} and D_{M_2} intersect perpendicularly everywhere. Then g is the metric tensor of a usual product of Riemannian manifolds if and only if D_{M_1} and D_{M_2} are totally geodesic foliations [21].

3. Anti-invariant Riemannian submersions

In this section, we are going to define anti-invariant Riemannian submersions from Kenmotsu manifolds and investigate the geometry of such submersions.

Definition 1 Let $M(\phi, \xi, \eta, g_M)$ be a Kenmotsu manifold and (N, g_N) a Riemannian manifold. A Riemannian submersion $F : M(\phi, \xi, \eta, g_M) \to (N, g_N)$ is called an anti-invariant Riemannian submersion if $\ker F_*$ is anti-invariant with respect to ϕ, i.e. $\phi(\ker F_*) \subseteq (\ker F_*)^\perp$.

544
Let \(F : M(\phi, \xi, \eta, g_M) \to (N, g_N) \) be an anti-invariant Riemannian submersion from a Kenmotsu manifold \(M(\phi, \xi, \eta, g_M) \) to a Riemannian manifold \((N, g_N) \). First of all, from Definition 1, we have \(\phi(\ker F_s)^\perp \cap (\ker F_s) \neq \{0\} \). We denote the complementary orthogonal distribution to \(\phi(\ker F_s) \) in \((\ker F_s)^\perp \) by \(\mu \). Then we have

\[
(\ker F_s)^\perp = \phi \ker F_s \oplus \mu. \tag{3.1}
\]

3.1. Anti-invariant Riemannian submersions admitting a horizontal structure vector field

In this subsection, we will study anti-invariant Riemannian submersions from a Kenmotsu manifold onto a Riemannian manifold such that the characteristic vector field \(\xi \) is a horizontal vector field. Using (3.1), we have

\[
\phi U \in \Gamma(\ker F_s) \quad \text{and} \quad CX \in \Gamma(\mu).
\]

Now we suppose that \(V \) is a vertical and \(X \) is a horizontal vector field. Using the above relation and (2.2), we obtain

\[
g_M(CX, \phi V) = 0. \tag{3.3}
\]

By virtue of (2.2) and (3.2), we get

\[
g_M(CX, \phi U) = g_M(\phi X - BX, \phi U) \tag{3.4}
\]

\[
= g_M(X, U) - \eta(X)\eta(U) - g_M(BX, \phi U).
\]

Since \(\phi U \in \Gamma((\ker F_s)^\perp) \) and \(\xi \in \Gamma((\ker F_s)^\perp) \), (3.4) implies (3.3). From this last relation we have \(g_N(F_\phi V, F_\phi CX) = 0 \), which implies that

\[
TN = F_\phi(\phi(\ker F_s)) \oplus F_\phi(\mu). \tag{3.5}
\]

The proof of the following result is the same as Theorem 10 of [15]; therefore, we omit its proof.

Theorem 1 Let \(M(\phi, \xi, \eta, g_M) \) be a Kenmotsu manifold of dimension \(2m + 1 \) and \((N, g_N) \) a Riemannian manifold of dimension \(n \). Let \(F : M(\phi, \xi, \eta, g_M) \to (N, g_N) \) be an anti-invariant Riemannian submersion such that \((\ker F_s)^\perp = \phi \ker F_s \oplus \{\xi\} \). Then \(m + 1 = n \).

Remark 1 We note that Example 2 satisfies Theorem 1.

Lemma 3 Let \(F \) be an anti-invariant Riemannian submersion from a Kenmotsu manifold \(M(\phi, \xi, \eta, g_M) \) to a Riemannian manifold \((N, g_N) \). Then we have

\[
A_X \xi = 0, \tag{3.6}
\]

\[
T_U \xi = U, \tag{3.7}
\]

\[
g_M(\nabla Y CX, \phi U) = -g_M(CX, \phi A_Y U), \tag{3.8}
\]

for \(X, Y \in \Gamma((\ker F_s)^\perp) \) and \(U \in \Gamma(\ker F_s) \).
Proof Using (2.15) and (2.5), we have (3.6). Using (2.13) and (2.5), we obtain (3.7). Now using (3.3), we get
\[g_M(\nabla_Y CX, \phi U) = -g_M(CX, \nabla_Y \phi U), \]
for \(X, Y \in \Gamma((\ker F_*)^\perp) \) and \(U \in \Gamma(\ker F_*) \). Then (2.14) and (2.4) imply that
\[g_M(\nabla_Y CX, \phi U) = -g_M(CX, \phi A_Y U) - g_M(CX, \phi (V \nabla_Y U)). \]
Since \(\phi(V \nabla_Y U) \in \Gamma((\ker F_*)^\perp) \), we obtain (3.8).

We now study the integrability of the distribution \((\ker F_*)^\perp\) and then we investigate the geometry of leaves of \(\ker F_*\) and \((\ker F_*)^\perp\).

Theorem 2 Let \(F \) be an anti-invariant Riemannian submersion from a Kenmotsu manifold \(M(\phi, \xi, \eta, g_M) \) to a Riemannian manifold \((N, g_N) \). Then the following assertions are equivalent to each other:

i) \((\ker F_*)^\perp\) is integrable,

ii) \(g_N((\nabla F_*)(Y, BX), F_\ast \phi V) = g_N((\nabla F_*)(X, BX), F_\ast \phi V) + g_M(CY, \phi A_X V) - g_M(CX, \phi A_Y V), \)

iii) \(g_M(A_X BY - A_Y BX, \phi V) = g_M(CY, \phi A_X V) - g_M(CX, \phi A_Y V) \)

for \(X, Y \in \Gamma((\ker F_*)^\perp) \) and \(V \in \Gamma(\ker F_*) \).

Proof From (2.2) and (2.4), one easily obtains
\[g_M([X, Y], V) = g_M(\nabla_X Y, V) - g_M(\nabla_Y X, V) = g_M(\nabla_X \phi Y, \phi V) - g_M(\nabla_Y \phi X, \phi V). \]
for \(X, Y \in \Gamma((\ker F_*)^\perp) \) and \(V \in \Gamma(\ker F_*) \). Then from (3.2), we have
\[g_M([X, Y], V) = g_M(\nabla_X BY, \phi V) + g_M(\nabla_X CY, \phi V) - g_M(\nabla_Y BX, \phi V) - g_M(\nabla_Y CX, \phi V). \]

Taking into account that \(F \) is a Riemannian submersion and using (2.8), (2.14), and (3.8), we obtain
\[g_M([X, Y], V) = g_N(F_\ast \nabla_X BY, F_\ast \phi V) - g_M(CY, \phi A_X V) - g_N(F_\ast \nabla_Y BX, F_\ast \phi V) + g_M(CX, \phi A_Y V). \]

Thus, from (2.19) we have
\[g_M([X, Y], V) = g_N(-(\nabla F_*)(X, BY) + (\nabla F_*)(Y, BX), F_\ast \phi V) + g_M(CX, \phi A_Y V) - g_M(CY, \phi A_X V) \]

which proves \((i) \Leftrightarrow (ii)\). On the other hand, using (2.19), we get
\[(\nabla F_*)(Y, BX) - (\nabla F_*)(X, BY) = -F_\ast(\nabla_Y BX - \nabla_X BY). \]

Then (2.14) implies that
\[(\nabla F_*)(Y, BX) - (\nabla F_*)(X, BY) = -F_\ast(A_Y BX - A_X BY). \]
From (2.8) it follows that \(A_Y BX - A_X BY \in \Gamma((\ker F_*)^\perp) \); this shows that \((ii) \Leftrightarrow (iii)\).
Remark 2 We assume that $(\ker F_*)^\perp = \phi \ker F_* \oplus \{\xi\}$. Using (3.2) one can prove that $CX = 0$ for $X \in \Gamma((\ker F_*)^\perp)$.

Hence we can give the following corollary.

Corollary 1 Let $M(\phi, \xi, \eta, g_M)$ be a Kenmotsu manifold of dimension $2m + 1$ and (N, g_N) a Riemannian manifold of dimension n. Let $F : M(\phi, \xi, \eta, g_M) \to (N, g_N)$ be an anti-invariant Riemannian submersion such that $(\ker F_*)^\perp = \phi \ker F_* \oplus \{\xi\}$. Then the following assertions are equivalent to each other:

i) $(\ker F_*)^\perp$ is integrable,

ii) $(\nabla F_*)(X, \phi Y) = (\nabla F_*)(\phi X, Y)$, $X, Y \in \Gamma((\ker F_*)^\perp)$,

iii) $A_X \phi Y = A_Y \phi X$.

Theorem 3 Let $M(\phi, \xi, \eta, g_M)$ be a Kenmotsu manifold of dimension $2m + 1$ and (N, g_N) a Riemannian manifold of dimension n. Let $F : M(\phi, \xi, \eta, g_M) \to (N, g_N)$ be an anti-invariant Riemannian submersion.

Then the following assertions are equivalent to each other:

i) $(\ker F_*)^\perp$ defines a totally geodesic foliation on M,

ii) $g_M(A_X BY, \phi V) = g_M(CY, \phi A_X V)$,

iii) $g_N((\nabla F_*)(X, \phi Y), F_* \phi V) = -g_M(CY, \phi A_X V)$,

for $X, Y \in \Gamma((\ker F_*)^\perp)$ and $V \in \Gamma(\ker F_*)$.

Proof From (2.2) and (2.4), we obtain

$$g_M(\nabla_X Y, V) = g_M(\nabla_X \phi Y, \phi V),$$

for $X, Y \in \Gamma((\ker F_*)^\perp)$ and $V \in \Gamma(\ker F_*)$. By virtue of (3.2), we get

$$g_M(\nabla_X Y, V) = g_M(\nabla_X BY + \nabla_X CY, \phi V).$$

Using (2.14) and (3.8), we have

$$g_M(\nabla_X Y, V) = g_M(A_X BY, \phi V) - g_M(CY, \phi A_X V).$$

The last equation shows $(i) \Leftrightarrow (ii)$.

For $X, Y \in \Gamma((\ker F_*)^\perp)$ and $V \in \Gamma(\ker F_*)$,

$$g_M(A_X BY, \phi V) = g_M(CY, \phi A_X V) \quad (3.9)$$

Since differential F_* preserves the lengths of horizontal vectors the relation (3.9) forms

$$g_M(CY, \phi A_X V) = g_N(F_* A_X BY, F_* \phi V) \quad (3.10)$$

By using (2.14) and (2.19) in (3.10), we obtain

$$g_M(CY, \phi A_X V) = g_N(-(-F_*)(X, \phi Y), F_* \phi V)$$

which tells that $(ii) \Leftrightarrow (iii)$. □
Corollary 2 Let $F : M(\phi, \xi, \eta, g_M) \rightarrow (N, g_N)$ be an anti-invariant Riemannian submersion such that $(\ker F_*)^\perp = \phi \ker F_* \oplus \{\xi\}$, where $M(\phi, \xi, \eta, g_M)$ is a Kenmotsu manifold and (N, g_N) is a Riemannian manifold. Then the following assertions are equivalent to each other:

i) $(\ker F_*)^\perp$ defines a totally geodesic foliation on M,

ii) $A_X \phi Y = 0$,

iii) $(\nabla F_*)(X, \phi Y) = 0$ for $X, Y \in \Gamma((\ker F_*)^\perp)$ and $V \in \Gamma(\ker F_*)$.

The following result is a consequence from (2.12) and (3.7).

Theorem 4 Let F be an anti-invariant Riemannian submersion from a Kenmotsu manifold $M(\phi, \xi, \eta, g_M)$ to a Riemannian manifold (N, g_N). Then $(\ker F_*)$ does not define a totally geodesic foliation on M.

Using Theorem 4, one can give the following result.

Theorem 5 Let $F : M(\phi, \xi, \eta, g_M) \rightarrow (N, g_N)$ be an anti-invariant Riemannian submersion where $M(\phi, \xi, \eta, g_M)$ is a Kenmotsu manifold and (N, g_N) is a Riemannian manifold. Then F is not a totally geodesic map.

Remark 3 Now we suppose that $\{e_1, ..., e_m\}$ is a local orthonormal frame of $\Gamma(\ker F_*)$. From the well-known equation $H = \frac{1}{m} \sum_{i=1}^{m} T_{e_i} e_i$, (2.12), and (2.17) we have

$$mg(H, \xi) = g(T_{e_1}, e_1, \xi) + g(T_{e_2}, e_2, \xi) + \cdots + g(T_{e_m}, e_m, \xi)$$

$$= -g(T_{e_1}, \xi, e_1) - g(T_{e_2}, \xi, e_2) - \cdots - g(T_{e_m}, \xi, e_m)$$

$$= -g(\xi, \xi) - g(e_2, e_2) - \cdots - g(e_m, e_m)$$

$$= -m$$

We get $g(H, \xi) = -1$. Therefore, $\ker F_*$ does not have minimal fibers.

By virtue of Remark 3, we have the following theorem.

Theorem 6 Let $F : M(\phi, \xi, \eta, g_M) \rightarrow (N, g_N)$ be an anti-invariant Riemannian submersion where $M(\phi, \xi, \eta, g_M)$ is a Kenmotsu manifold and (N, g_N) is a Riemannian manifold. Then F is not harmonic.

3.2. Anti-invariant Riemannian submersions admitting a vertical structure vector field

In this subsection, we will prove that there do not exist (anti-invariant) Riemannian submersions from Kenmotsu manifolds onto Riemannian manifolds such that characteristic vector field ξ is a vertical vector field. Moreover, we will give a method to get horizontally conformal submersion examples from warped product manifolds onto Riemannian manifolds.

It is easy to see that μ is an invariant distribution of $(\ker F_*)^\perp$, under the endomorphism ϕ. Thus, for $X \in \Gamma((\ker F_*)^\perp)$, we have

$$\phi X = BX + CX,$$ \hspace{1cm} (3.11)

where $BX \in \Gamma(\ker F_*)$ and $CX \in \Gamma(\mu)$. On the other hand, since $F_*((\ker F_*)^\perp) = TN$ and F is a Riemannian submersion, using (3.11) we derive $g_N(F_* \phi V, F_* CX) = 0$, for every $X \in \Gamma((\ker F_*)^\perp)$ and $V \in \Gamma(\ker F_*)$.

548
which implies that

\[TN = F_*(\phi(\ker F_*)) \oplus F_*(\mu). \] (3.12)

Theorem 7 Let \((M^{m+1} = I \times_f L^m, g_M = dt^2 + f^2 g_L) \) be a warped product manifold of an interval \(I \) and a Riemannian manifold \(L \). If \(F : (M^{m+1}, g_M) \to (N^n, g_N) \) is a Riemannian submersion with vertical vector field \(\frac{\partial}{\partial t} = \partial_t \) then the warped product manifold is a Riemannian product manifold.

Proof Let \(\sigma = (t, x_1, x_2, ..., x_m) \) be a coordinate system for \(M \) at \(p \in M \) and \(y_1, y_2, ..., y_n \) be a coordinate system for \(N \) at \(F(p) \). Since \(\partial_t \) is a vertical vector field, we have

\[0 = F_*(\partial_t)_p = \sum_{i=1}^{n} \frac{\partial(y_i \circ F)}{\partial t}(p) \frac{\partial}{\partial y_i} |_{F(p)}. \]

Therefore, the component functions \(y_i \circ F = f_i \) of \(F \) do not contain \(t \) parameter. Namely,

\[F : I \times_f L \to N, (t, x) \to F(t, x) = (f_1(x), ..., f_n(x)), \]

where \(x = (x_1, x_2, ..., x_m) \) and also \((\ker F_*)^\perp \mid_{(t, x)} \subseteq T_{(t, x)}(\{t\} \times L) \cong T_2L \) at point \(p = (t, x) \in M \). That is, if \(\tilde{X} \in (\ker F_*)^\perp \), there is a vector field \(X \in \Gamma(TN) \) such that the lift of \(X \) to \(I \times L \) is the vector field \(\tilde{X} \), \(\pi_{2*}(\tilde{X}_p) = X_{\pi_2(p)} \) for all \(p \in M \). For the sake of simplification we use the same notation for a vector field and for its lift.

Using Proposition 1 (ii), we obtain

\[\nabla_X \partial_t = \frac{f'}{f} X \] (3.13)

for \(X \in \Gamma((\ker F_*)^\perp) \). From (2.14) and (3.13) we have

\[A_X \partial_t = \frac{f'}{f} X \] (3.14)

for \(X \in \Gamma((\ker F_*)^\perp) \).

By applying (2.11), (2.18), and (3.14), we find

\[g_M(A_X Y, \partial_t) = -\frac{f'}{f} g_M(X, Y) = -\frac{f'}{f} g_M(Y, X) = g_M(A_Y X, \partial_t) = -g_M(A_X Y, \partial_t) \]

for \(X, Y \in \Gamma((\ker F_*)^\perp) \). Thus, we obtain

\[g_M(A_X Y, \partial_t) = -\frac{f'}{f} g_M(X, Y) = 0. \] (3.15)

It follows from (3.15) that \(f' = 0 \). Hence warping function \(f \) must be constant. Therefore, up to a change of scale, \(M \) is a Riemannian product manifold. \(\square \)
Theorem 8 Let $M(\phi, \xi, \eta, g_M)$ be a Kenmotsu manifold of dimension $2m + 1$ and (N, g_N) is a Riemannian manifold of dimension n. There is no Riemannian submersion $F : M(\phi, \xi, \eta, g_M) \to (N, g_N)$ such that the characteristic vector field ξ is a vertical vector field.

Proof From [14] we know that locally a Kenmotsu manifold is a warped product $I \times_f L$ of an interval I and a Kaehler manifold L with metric $g_M = dt^2 + f^2 g_L$ and warping function $f(t) = se^t$, where s is a positive constant. Let $\xi = \frac{\partial}{\partial t}$ be a vertical vector field. It follows from Theorem 7 that M is a Riemannian product manifold. Since $f(t) = se^t$ is not constant, M cannot be a Riemannian product manifold. This is a contradiction that completes the proof of theorem. \qed

Theorem 9 Let $M = M_1 \times_f M_2$ be a warped product manifold with metric $g = g_1 + f^2 g_2$, $\pi_2 : M_1 \times M_2 \to M_2$ second canonical projection, and (M_3, g_3) Riemannian manifold. If f_1 is a Riemannian submersion from M_2 onto M_3 then $f_2 = f_1 \circ \pi_2 : M \to M_3$ is a horizontally conformal submersion.

Proof Since f_1 is a Riemannian submersion, rank $f_1 = \dim M_3$. Using Proposition 2, we have rank $f_2|_{(p,q)} = \dim (\pi_2) = \dim M_3$ for any point $(p,q) \in M$. Consequently f_2 is a submersion. Since π_2 is a natural horizontally conformal submersion for a warped product manifold, we get ker $\pi_2|_{(p,q)} = T_{(p,q)} M_1 = T_{(p,q)} (M_1 \times \{q\}) \cong T_p M_1$. Therefore, ker $f_2|_{(p,q)} \cong T_p M_1 \times \ker f_1|_{(p,q)}$ and $(\ker f_2|_{(p,q)})^\perp = \{p\} \times (\ker f_1|_{(p,q)})^\perp \cong (\ker f_1|_{(p,q)})^\perp$. Hence,

\[
g(X,Y) = f^2(p) g_2(\pi_2(X), \pi_2(Y)) = f^2(p) g_1(f_1(X), f_1(\pi_2(Y))) = f^2(p) g_1(f_2(X), f_2(Y))
\]

for $X, Y \in \Gamma((\ker f_2)^\perp)$. Thus we get the requested result. \qed

Remark 4 Theorem 9 gives a chance to produce horizontally conformal submersion examples.

4. **Examples**

We now give some examples for anti-invariant submersion and anti-invariant horizontally conformal submersions from Kenmotsu manifolds.

Example 2 Let M be a Kenmotsu manifold as in Example 1. Let N be $\mathbb{R} \times_c \mathbb{R}^2$. The Riemannian metric tensor field g_N is defined by $g_N = e^{2z}(du \otimes du + dv \otimes dv) + dz \otimes dz$ on N.

Let $F : M \to N$ be a map defined by $F(x_1, x_2, y_1, y_2, t) = \left(\frac{x_1^2 + y_2}{\sqrt{2}}, \frac{x_2^2 + y_1}{\sqrt{2}}, z\right)$. Then a simple calculation gives

\[
\ker F_* = \text{span}\{V_1 = \frac{1}{\sqrt{2}}(E_2 - E_3), \ V_2 = \frac{1}{\sqrt{2}}(E_1 - E_4)\}
\]

and

\[
(\ker F_*)^\perp = \text{span}\{H_1 = \frac{1}{\sqrt{2}}(E_1 + E_4), \ H_2 = \frac{1}{\sqrt{2}}(E_2 + E_3), \ H_3 = E_5 = \xi\}.
\]
Then it is easy to see that F is a Riemannian submersion. Moreover, $\phi V_1 = -H_1$, $\phi V_2 = -H_2$ imply that $\phi(\ker F_\ast) \subset (\ker F_\ast)^\bot = \phi(\ker F_\ast) \oplus \{\xi\}$. Thus F is an anti-invariant Riemannian submersion such that ξ is a horizontal vector field.

Example 3 Let M be a Kenmotsu manifold as in Example 1 and N be \mathbb{R}^2. The Riemannian metric tensor field g_N is defined by $g_N = e^{2z}(du \otimes du + dv \otimes dv)$ on N.

Let $F : M \to N$ be a map defined by $F(x_1, x_2, y_1, y_2, z) = (x_1 + y_2, x_2 + y_1, z)$. Then by direct calculations we have

$$\ker F_\ast = \text{span}\{V_1 = \frac{1}{\sqrt{2}}(E_3 - E_2), V_2 = \frac{1}{\sqrt{2}}(E_4 - E_1), V_3 = E_5 = \xi = \frac{\partial}{\partial z}\}$$

and

$$(\ker F_\ast)^\bot = \text{span}\{H_1 = \frac{1}{\sqrt{2}}(E_3 + E_2), H_2 = \frac{1}{\sqrt{2}}(E_4 + E_1)\}.$$

Then it is easy to see that F is a horizontally conformal submersion. Moreover, $\phi V_1 = H_2$, $\phi V_2 = H_1$, $\phi V_3 = 0$ imply that $\phi(\ker F_\ast) = (\ker F_\ast)^\bot$. As a result, F is an anti-invariant horizontally conformal submersion such that ξ is a vertical vector field.

Remark 5 Recently Akyol and Şahin [1] studied conformal anti-invariant submersions from almost Hermitian manifolds onto Riemannian manifolds. Therefore, it will be worth examining this study area, which is anti-invariant (horizontally) conformal submersion from almost contact metric manifolds onto Riemannian manifolds.

Acknowledgment

The authors are grateful to the referee for his/her valuable comments and suggestions.

References

