Derivation-homomorphisms

Lingyue LI\(^1\)\(^*,\) Xiaowei XU\(^2\)

\(^1\)Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P.R. China
\(^2\)College of Mathematics, Jilin University, Changchun, P.R. China

Received: 22.05.2015 • Accepted/Published Online: 24.02.2016 • Final Version: 02.12.2016

Abstract: In this paper, we introduce notions of \((n,m)\)-derivation-homomorphisms and Boolean \(n\)-derivations. Using Boolean \(n\)-derivations and \(m\)-homomorphisms, we describe structures of \((n,m)\)-derivation-homomorphisms.

Key words: Derivation-homomorphism, Boolean \(n\)-derivation, \((n,m)\)-derivation-homomorphism

1. Introduction
In this paper, by a ring we shall always mean an associative ring with an identity.

Homomorphisms and derivations are important in the course of researching rings. Multiderivations (e.g., biderivations, \(3\)-derivation, or \(n\)-derivation in general) have been explored in (semi-) rings. In 1989, Vukman [8] researched Posner’s theorems [7] for the trace map of symmetric biderivations on (semi-) prime rings. Brešar [1, 2] characterized biderivations on prime and semiprime rings, respectively, explaining the reason why Vukman’s results hold. In 2007, Jung and Park [3] investigated Posner’s theorems for the trace of permuting \(3\)-derivations on prime and semiprime rings. In cases of permuting \(4\)-derivations and symmetric \(n\)-derivations, similar results were obtained in [5] and [6]. It was proved in [10] that a skew \(n\)-derivation \((n \geq 3)\) on a semiprime ring \(R\) must map into the center of \(R\). Wang et al. [9] also investigated \(n\)-derivations \((n \geq 3)\) on triangular algebras. In a recent paper, Li and Xu [4] described multihomomorphisms.

In this paper, we consider a kind of multimapping that is either a derivation or a homomorphism for each component when the other components are fixed by any given elements. Such a multimapping is called an \((n,m)\)-derivation-homomorphism and will be described in this paper.

Let \(m \geq 0, n \geq 0\), and \(m+n > 0\) in \(\mathbb{Z}\). Let \(R_k\) be rings, where \(k \in \{1, \ldots, n+m\}\). Let \(S\) be a ring and a bimodule \(R_k S_{R_k}\) for \(1 \leq k \leq m\) such that \(r_k(st) = (r_k s)t\), \((st)r_k = s(tr_k)\), and \((sr_k)t = s(r_k t)\) for \(r_k \in R_k\), \(s, t \in S\). Then we call \(f : R_1 \times \cdots \times R_{n+m} \rightarrow S\) an \((n,m)\)-derivation-homomorphism from \(R_1 \times \cdots \times R_{n+m}\) to \(S\), if the following conditions hold:

(i) For \(i \in \{1, \ldots, n+m\}\)

\[
 f(a_1, \ldots, a_i + b, \ldots, a_{n+m}) = f(a_1, \ldots, a_i, \ldots, a_{n+m}) + f(a_1, \ldots, b, \ldots, a_{n+m});
\]

(ii) For \(i \in \{1, \ldots, n\}\)

\[
 f(a_1, \ldots, a_i b, \ldots, a_{n+m}) = a_i f(a_1, \ldots, b, \ldots, a_{n+m}) + f(a_1, \ldots, a_i, \ldots, a_{n+m}) b;
\]

*Correspondence: lily@qibebt.ac.cn

2010 AMS Mathematics Subject Classification: 16W25.
(iii) For $i \in \{n + 1, \ldots, n + m\}$

$$f(a_1, \ldots, a_i b, \ldots, a_{n+m}) = f(a_1, \ldots, a_i, \ldots, a_{n+m}) f(a_1, \ldots, b, \ldots, a_{n+m}).$$

It is easy to see that an $(m, 0)$-derivation-homomorphism is an m-derivation, and a $(0, n)$-derivation-homomorphism is an n-homomorphism. In this paper, our concern will focus on the case $mn \neq 0$, i.e. the case that both m and n are positive.

An n-derivation $\phi : R_1 \times \cdots \times R_n \to S$ is said to be a Boolean n-derivation, if $\phi(x_1, \ldots, x_n) = \phi(x_1, \ldots, x_n)^2$ holds for all $(x_1, \ldots, x_n) \in R_1 \times \cdots \times R_n$. In particular, a Boolean 1-derivation is also called a Boolean derivation.

Let $\phi_i : R_i \to S$ be mappings, $i = 1, \ldots, n$. Then we define $\phi_1 \ast \cdots \ast \phi_n : R_1 \times \cdots \times R_n \to S$ as follows:

$$\phi_1 \ast \cdots \ast \phi_n(a_1, \ldots, a_n) = \phi_1(a_1) \cdots \phi_n(a_n),$$

where $(a_1, \ldots, a_n) \in R_1 \times \cdots \times R_n$.

We call $f : R_1 \times \cdots \times R_n \times R_{n+1} \times \cdots \times R_{n+m} \to S$ an (n, m)-derivation-homomorphism of S, if $R_i = S$ for all $i \in \{1, \ldots, n + m\}$.

2. Main result
Firstly, we consider the case of $(1, 1)$-derivation-homomorphisms.

Lemma 2.1 Let f be a $(1, 1)$-derivation-homomorphism from $R_1 \times R_2$ to S. Then for $a, b, c \in R_1$ and $x, y \in R_2$,

(I) $f(a, x) = -f(a, x)$;

(II) $f(a, x) f(b, y) = f(b, x) f(a, y)$;

(III) $af(b, x) = f(b, x)a$;

(IV) $[a, c] f(b, x) + [b, c] f(a, x) = 0$. In particular, $[a, b] f(b, x) = 0$.

Proof

(I) Observing the different expansions of $f(a + b, xy)$, we get

$$
\begin{align*}
f(a + b, xy) &= f(a, xy) + f(b, xy), \\
f(a + b, xy) &= f(a + b, x) f(a + b, y) \\
&= (f(a, x) + f(b, x))(f(a, y) + f(b, y)) \\
&= f(a, xy) + f(a, x) f(b, y) + f(b, x) f(a, y) + f(b, xy).
\end{align*}
$$

Then

$$f(a, x) f(b, y) = -f(b, x) f(a, y).$$

(2.1)

Taking $y = 1$ and $b = a$ in (2.1), we have $f(a, x) f(a, 1) = -f(a, x) f(a, 1)$. Hence, $f(a, x) = -f(a, x)$.

(II) It is easy to see from (I) and (2.1).

(III) We write (2.1) as

$$f(a, x) f(b, y) + f(b, x) f(a, y) = 0.$$

(2.2)

Replacing a by ab in (2.2), we obtain

$$f(ab, x) f(b, y) + f(b, x) f(ab, y) = 0.$$
that is,
\[af(b, x)f(b, y) + f(a, x)bf(b, y) + f(b, x)af(b, y) + f(b, x)f(a, y)b = 0. \quad (2.3) \]
Replacing \(b \) by \(b^2 \) in (2.2), we obtain
\[f(a, x)f(b^2, y) + f(b^2, x)f(a, y) = 0, \]
that is,
\[f(a, x)bf(b, y) + f(a, x)f(b, y)b + bf(b, x)f(a, y) + f(b, x)b(a, y) = 0. \quad (2.4) \]
With (I) and (II), it follows from (2.3) and (2.4) that
\[af(b, x)f(b, y) + f(b, x)af(b, y) + bf(b, x)f(a, y) + f(b, x)b(a, y) = 0. \quad (2.5) \]
Replacing \(a \) by \(ba \) in (2.2), we get
\[f(ba, x)f(b, y) + f(b, x)f(ba, y) = 0, \]
that is,
\[bf(a, x)f(b, y) + f(b, x)af(b, y) + f(b, x)bf(a, y) + f(b, x)f(b, y)a = 0. \quad (2.6) \]
With (I) and (II), it follows from (2.5) and (2.6) that
\[af(b, x)f(b, y) + f(b, x)f(b, y)a = 0. \quad (2.7) \]
Taking \(y = 1 \), we get
\[af(b, x) + f(b, x)a = 0. \]
Then by (I), \(af(b, x) = f(b, x)a. \)

(IV) Using different expansions of \(f(abc, x) \) and (III), we have
\[
\begin{cases}
 f(abc, x) = af(bc, x) + bcf(a, x) = abf(c, x) + acf(b, x) + bcf(a, x), \\
 f(abc, x) = abf(c, x) + cf(ab, x) = abf(c, x) + caf(b, x) + cbf(a, x).
\end{cases}
\]
Therefore,
\[[a, c]f(b, x) + [b, c]f(a, x) = 0. \]
Setting \(c = b \), we obtain \([a, b]f(b, x) = 0. \)

\begin{Theorem}
Let \(f \) be a \((1, 1)\)-derivation-homomorphism from \(R_1 \times R_2 \) to \(S \). Assume that there exists \(a_0 \in R_1 \) such that \(f(a_0, 1)f(b, 1) = f(b, 1)f(a_0, 1) = f(b, 1) \) holds for each \(b \in R_1 \). Then there exist a Boolean derivation \(\phi : R_1 \to S \) and a homomorphism \(\lambda : R_2 \to S \) such that \(f = \phi*\lambda \) and \(a\lambda(x) - \lambda(x)a = [\phi(a), \lambda(x)] = 0 \) for \(a \in R_1 \) and \(x \in R_2 \). Furthermore, if the identity element of \(S \) has an inverse image, then \(f \) has a unique decomposition.
\end{Theorem}
It is easy to see that both \(f \) is a Boolean derivation from \(R_1 \) to \(S \). Obviously, \(\lambda \) is a homomorphism from \(R_2 \) to \(S \). Then by (II) of Lemma 2.1 we have

\[
(\phi \star \lambda)(a, x) = \phi(a) \lambda(x) = f(a, 1)f(a_0, x) = f(a_0, 1)f(a, x) \\
= f(a_0, 1)f(a, x) = f(1)f(a, x) = f(a, x).
\]

For \(a \in R_1, x \in R_2 \), \(a\lambda(x) - \lambda(x)a = 0 \) follows from (III) of Lemma 2.1. Then

\[
\lambda(x) \phi(a) = f(a_0, x)f(a, 1) = f(a, x)f(a_0, 1) \\
= f(a, x)f(a_1)f(a_0, 1) = f(a, x)f(a, 1) \\
= f(a, x) = \phi(a) \lambda(x).
\]

Thus the proof of the existence is finished.

Now we prove the uniqueness. Suppose that there exist a Boolean derivation \(\phi' : R_1 \to S \) and a homomorphism \(\lambda' : R_2 \to S \) such that \(f = \phi \star \lambda = \phi' \star \lambda' \), \(a\lambda'(x) - \lambda'(x)a = [\phi'(a), \lambda'(x)] = 0 \) for \(a \in R_1 \), \(x \in R_2 \), and the identity element of \(S \) has an inverse image under \(f \). Then there exists \((a_0, x_0) \in R_1 \times R_2 \) such that \(f(a_0, x_0) = 1 \). Moreover, \(f(a_0, x_0) = f(a_0, 1)f(a_0, x_0) = f(a_0, 1) \). Hence

\[
f(a_0, 1)(\phi'(a) \lambda'(1) - \phi'(a)) \\
= \phi'(a_0)\lambda'(1)(\phi'(a) \lambda'(1) - \phi'(a)) \\
= \phi'(a_0)\phi'(a) \lambda'(1) - \phi'(a_0) \phi'(a) \lambda'(1) \\
= 0,
\]

that is, \(\phi'(a) \lambda'(1) = \phi'(a) \). Furthermore, we obtain

\[
\phi(a) = f(a, 1) = (\phi' \star \lambda')(a, 1) = \phi'(a) \lambda'(1) = \phi'(a).
\]

Similarly, we get \(f(a_0, 1)(\phi'(a_0) \lambda'(x) - \lambda'(x)) = 0 \), which implies \(\phi'(a_0) \lambda'(x) = \lambda'(x) \). Then

\[
\lambda(x) = f(a_0, x) = (\phi' \star \lambda')(a_0, x) = \phi'(a_0) \lambda'(x) = \lambda'(x).
\]

The following example shows that it is possible that \(f \) has two different decompositions without the assumption that the identity element of \(S \) has an inverse image.

Example 2.3 Let \(R = S = \mathbb{F}_2[a, b]/(a^2 - 1, b^2 - b) \), where \(\mathbb{F}_2[a, b] \) is the polynomial ring in variables \(a, b \) over the field \(\mathbb{F}_2 \) and \(I = (a^2 - 1, b^2 - b) \) is the ideal generated by \(a^2 - 1 \) and \(b^2 - b \). Let \(\phi \) be a derivation of \(\mathbb{F}_2[a, b] \) by \(\phi(a) = b \) and \(\phi(b) = 0 \). It is easy to see that \(\phi(I) \subseteq I \). Therefore, \(\phi \) induces a derivation \(\phi \) of \(R \). It is obvious that \(\phi(R) = \{0, \overline{b}\} \), and so \(\phi \) is a Boolean derivation. For all \(x \in R \), we define \(\lambda : R \to S \) and \(\lambda' : R \to S \) by

\[
\lambda(x) = x, \ \lambda'(x) = \overline{b}x.
\]

It is easy to show that both \(\lambda \) and \(\lambda' \) are homomorphisms from \(R \) to \(S \), and \(\lambda \neq \lambda' \). Meanwhile, \(\phi \star \lambda = \phi \star \lambda' \). Let \(f = \phi \star \lambda \). It is clear that \(f \) is a \((1, 1)\)-derivation-homomorphism from \(R \times R \) to \(S \), but \(f \) has no unique decomposition.
For the derivation-homomorphism of a semiprime ring, we get the following result.

Theorem 2.4 Let \(R \) be a semiprime ring. Then any derivation-homomorphism of \(R \) must be zero.

Proof Let \(f \) be a derivation-homomorphism of \(R \), that is, a \((1, 1)\)-derivation-homomorphism from \(R \times R \) to \(R \). By the definition of \((1, 1)\)-derivation-homomorphism, for any \(a, b, c \in R \), we have \(f(ab, x) = f(ab, x)f(ab, 1) \).

It follows from Lemma 2.1 that

\[
af(b, x) + f(a, x)b = (af(b, x) + f(a, x)b)(af(b, 1) + f(a, 1)b) = af(b, x)af(b, 1) + af(b, xf(a, 1)b + f(a, x)batf(b, 1) + f(a, x)baf(b, 1)b = a^2 f(b, x) + abf(a, 1)f(b, x) + baf(a, 1)f(b, x) + f(a, x)b^2 = a^2 f(b, x) + [a, b]f(a, 1)f(b, x) + f(a, x)b^2 = a^2 f(b, x) + f(a, x)b^2.
\]

Then

\[
a f(b, x) + f(a, x)b = a^2 f(b, x) + f(a, x)b^2. \tag{2.8}
\]

By (I) and (II) of Lemma 2.1, it is easy to show that \(f(a^2, x) = 0 \). Taking \(x = 1 \) and \(b = a^2 \) in (2.8), we get

\[
a^2 f(a, 1) = a^4 f(a, 1). \tag{2.9}
\]

For any \(a, r \in R \), it can be checked from (III), (IV) of Lemma 2.1 and (2.9) that

\[
(a^2 - a)f(a, 1)r(a^2 - a)f(a, 1) = (a^2 f(a, 1) - af(a, 1))r(a^2 f(a, 1) - af(a, 1)) = a^2 f(a, 1)r^2 f(a, 1) - a^2 f(a, 1)raf(a, 1) - af(a, 1)r^2 f(a, 1) + af(a, 1)raf(a, 1) = a^2 raf(a, 1) - a^2 raf(a, 1) + ar(f(a, 1) = - a(a^2 ra)f(a, 1) - a^2 raf(a, 1) + a(ar)raf(a, 1) - a(ar)f(a, 1) = - a^3 raf(a, 1) - a^2 raf(a, 1) = a(a^3 r)f(a, 1) - a^2 raf(a, 1) = 0.
\]

Since \(R \) is a semiprime ring, we have \((a^2 - a)f(a, 1) = 0\). Therefore

\[
(a f(a, 1))^2 = a^2 f(a, 1) = af(a, 1),
\]

that is, \(af(a, 1) \) is an idempotent element. By the definition of derivation-homomorphism, we get

\[
f(a, x) = f(a, x)f(a, 1) = f(a f(a, 1), x) - af(f(a, 1), 1) = f((af(a, 1))^2, x) - af((f(a, 1))^2, 1) = 0.
\]
In order to describe \((n, m)\)-derivation-homomorphisms of a given ring, we first give two lemmas.

Lemma 2.5 Let \(f : R_1 \times \cdots \times R_{n+1} \rightarrow S\) be an \((n, 1)\)-derivation-homomorphism. Then for any \((a_1, x_1, \ldots, a_n, x_n, b, c) \in R_1^2 \times \cdots \times R_n^2 \times R_{n+1}^2\),

\[
\sum_{u_1, \ldots, u_n} f(u_1, \ldots, u_n, b)f(v_1, \ldots, v_n, c) = 0,
\]

where \(u_i\) is one component of \((a_i, x_i)\) and \(v_i\) is the other component, and so the left-hand side of the above equation is the sum of \(2^n\) terms.

Proof We prove this by induction on \(n\). For \(n = 1\), we have obtained the conclusion from (2.2).

Assume the lemma holds for \(1, \ldots, n - 1\), that is to say, for all \(k \leq n - 1\), any \((k, 1)\)-derivation-homomorphism \(g : R_1 \times \cdots \times R_k \times R_{k+1} \rightarrow S\) and any \((a_1, x_1, \ldots, a_k, x_k, b, c) \in R_1^2 \times \cdots \times R_k^2 \times R_{k+1}^2\), we have

\[
\sum_{u_1, \ldots, u_k} g(u_1, \ldots, u_k, b)f(v_1, \ldots, v_k, c) = 0,
\]

(2.10)

where \(u_i\) is one component of \((a_i, x_i)\) and \(v_i\) is the other component, and so the left-hand side of the above equation is the sum of \(2^k\) terms.

Let \(f\) be an \((n, 1)\)-derivation-homomorphism. For any

\[(a_1, x_1, \ldots, a_n, x_n, b, c) \in R_1^2 \times \cdots \times R_n^2 \times R_{n+1}^2,\]

expanding the first \(n\) variables of \(f(a_1 + x_1, \ldots, a_n + x_n, bc)\) by addition, and then expanding the \((n + 1)\)-th variable by multiplication, we have

\[
f(a_1 + x_1, \ldots, a_n + x_n, bc) = \sum_{u_1, \ldots, u_n} f(u_1, \ldots, u_n, bc)
\]

\[
= \sum_{u_1, \ldots, u_n} f(u_1, \ldots, u_n, b)f(u_1, \ldots, u_n, c),
\]

(2.11)

where \(u_i\) is one component of \((a_i, x_i)\), and so the right-hand side of (2.11) is the sum of \(2^n\) terms. On the other hand, expanding the \((n + 1)\)-th variable of \(f(a_1 + x_1, \ldots, a_n + x_n, bc)\) by multiplication, and then expanding the first \(n\) variables by addition, we obtain

\[
f(a_1 + x_1, \ldots, a_n + x_n, bc) = f(a_1 + x_1, \ldots, a_n + x_n, b)f(a_1 + x_1, \ldots, a_n + x_n, c)
\]

\[
= \sum_{y_1, \ldots, y_n} \sum_{z_1, \ldots, z_n} f(y_1, \ldots, y_n, b)f(z_1, \ldots, z_n, c),
\]

(2.12)

where \(y_i\) is one component of \((a_i, x_i)\) and \(z_i\) is one component of \((a_i, x_i)\), and so the right-hand side of (2.12) is the sum of \(2^{2n}\) terms.

We shall now classify items on the right-hand side of (2.12). For any \(s \in \{0, \ldots, n\}\), denote by \(A_s\) the sum of the item on the right-hand side of (2.12) that satisfies the following condition:
There exist $1 \leq j_1 < j_2 < \cdots < j_s \leq n$ such that y_{j_i} is one component of (a_k, x_k), and z_{j_i} is the other component for $t = 1, \ldots, s$; however, y_k and z_k are the same component of (a_k, x_k) for $k \in \{1, \ldots, n\}\{j_1, \ldots, j_s\}$. Then by (2.12) we get

$$f(a_1 + x_1, \ldots, a_n + x_n, bc) = A_0 + \cdots + A_n.$$

(2.13)

If $s \in \{1, \ldots, n-1\}$, let $i_1, \ldots, i_{n-s} \in \{1, \ldots, n\}$ with $i_1 < \cdots < i_{n-s}$. Denote by $\{j_1, \ldots, j_s\}$ the complementary set of $\{i_1, \ldots, i_{n-s}\}$ in $\{1, \ldots, n\}$. Fixed positions i_1, \ldots, i_{n-s} in f by $u_{i_1}, \ldots, u_{i_{n-s}}$, we obtain an $(s,1)$-derivation-homomorphism

$$g_{u_{i_1}, \ldots, u_{i_{n-s}}}(y_{j_1}, \ldots, y_{j_s}, b) = f(y_1, \ldots, y_n, b),$$

(2.14)

where $(y_1, \ldots, y_{n-s}) = (u_{i_1}, \ldots, u_{i_{n-s}})$. It follows from (2.10), (2.13), and (2.14) that

$$A_s = \sum_{i_1 < \cdots < i_{n-s}} \sum_{u_{i_1}, \ldots, u_{i_{n-s}}} \sum_{y_{j_1}, \ldots, y_{j_s}} g_{u_{i_1}, \ldots, u_{i_{n-s}}}(y_{j_1}, \ldots, y_{j_s}, b) \cdot g_{u_{i_1}, \ldots, u_{i_{n-s}}}(z_{j_1}, \ldots, z_{j_s}, c).$$

By the inductive assumption, we have

$$\sum_{y_{j_1}, \ldots, y_{j_s}} g_{u_{i_1}, \ldots, u_{i_{n-s}}}(y_{j_1}, \ldots, y_{j_s}, b) \cdot g_{u_{i_1}, \ldots, u_{i_{n-s}}}(z_{j_1}, \ldots, z_{j_s}, c) = 0.$$

Moreover, $A_s = 0$ for all $1 \leq s \leq n-1$. Looking back at (2.11) and (2.13), and noting that the right-hand side of (2.11) is A_0, we get $A_0 = A_0 + A_n$. Thus the proof is completed.

Lemma 2.6 Let f be an $(n,1)$-derivation-homomorphism of a ring S, that is, an $(n,1)$-derivation-homomorphism from $R_1 \times \cdots \times R_{n+1}$ to S, where $R_i = S$ for all $i \in \{1, \ldots, n+1\}$. Assume that the identity element of S has an inverse image, that is, there exists $(x_1, \cdots, x_n, x_{n+1}) \in R_1 \times \cdots \times R_{n+1}$ such that $f(x_1, \cdots, x_n, x_{n+1}) = 1$. Then there exist a unique Boolean n-derivation $\phi : R_1 \times \cdots \times R_n \rightarrow S$ and a unique homomorphism $\lambda : R_{n+1} \rightarrow Z(S)$ such that $f = \phi \ast \lambda$, where $\phi(a_1, \ldots, a_n) = f(a_1, \ldots, a_n, 1)$ and $\lambda(b) = f(x_1, \ldots, x_n, b)$.

Proof Firstly we prove the existence. From now on, in the course of proof of this Lemma, we will always assume that $R_1 = \cdots = R_{n+1} = S$. In order to make the implication of the symbols clear, we go on to use all the symbols R_1, \ldots, R_{n+1} except the symbol S. We shall prove that any $(n,1)$-derivation-homomorphism

$$f : R_1 \times \cdots \times R_n \times R_{n+1} \rightarrow S$$

satisfies

$$f(a_1, \ldots, a_n, b) = f(a_1, \ldots, a_n, 1)f(x_1, \ldots, x_n, b),$$

for a given $(x_1, \ldots, x_n) \in R_1 \times \cdots \times R_n$ and any $(a_1, \ldots, a_n, b) \in R_1 \times \cdots \times R_n \times R_{n+1}$. If $n = 1$, it is a part of conclusions in Theorem 2.2. We now proceed by induction on n.

Assume the lemma holds for $1, \ldots, n-1$, that is, for all $1 \leq k \leq n-1$ and any $(k,1)$-derivation-homomorphism $g : R_1 \times \cdots \times R_k \times R_{k+1} \rightarrow S$, we have

$$g(a_1, \ldots, a_k, b) = g(a_1, \ldots, a_k, 1)g(x_1, \ldots, x_k, b),$$

(2.15)
for a given \((x_1, \ldots, x_k) \in R_1 \times \cdots \times R_k\) and any \((a_1, \ldots, a_k, b) \in R_1 \times \cdots \times R_k \times R_{k+1}\).

Let \(f\) be an \((n, 1)\)-derivation-homomorphism. Since the identity element of \(S\) has an inverse image, there exists \((x_1, \ldots, x_n, 1) \in R_1 \times \cdots \times R_n \times R_{n+1}\) such that \(f(x_1, \ldots, x_n, 1) = 1\), since

\[
1 = f(x_1, \ldots, x_n, x_{n+1}) = f(x_1, \ldots, x_n, 1) f(x_1, \ldots, x_n, x_{n+1}) = f(x_1, \ldots, x_n, 1).
\]

Fixing the first \(n-1\) variables in \(f(a_1, \ldots, a_n, b)\), then \(f(a_1, \ldots, a_n, b)\) can be viewed as a \((1, 1)\)-derivation-homomorphism from \(R_n \times R_{n+1}\) to \(S\). By Lemma 2.1, for any \((a_1, \ldots, a_n, b) \in R_1 \times \cdots \times R_n \times R_{n+1}\) and \(r \in S\), we get

\[
f(a_1, \ldots, a_n, b) = -f(a_1, \ldots, a_n, b),
\]

and

\[
f(a_1, \ldots, a_n, b)r = rf(a_1, \ldots, a_n, b).
\]

For any \((a_1, x_1, \ldots, a_n, x_n, b, c) \in R_1^2 \times \cdots \times R_n^2 \times R_{n+1}^2\), by Lemma 2.5, we obtain

\[
\sum_{u_1, \ldots, u_n} f(u_1, \ldots, u_n, b)f(v_1, \ldots, v_n, 1) = 0,
\]

where \(u_i\) is one component of \((a_i, x_i)\), \(v_i\) is the other component, and so the left-hand side of (2.18) is the sum of \(2^n\) terms. If \(k \in \{1, \ldots, n - 1\}\), let \(i_1, \ldots, i_k \in \{1, \ldots, n\}\) with \(i_1 < \cdots < i_k\). We denote by \(\{j_1, \ldots, j_s\}\) the complementary set of \(\{i_1, \ldots, i_k\}\) in \(\{1, \ldots, n\}\). Fixing variables \(i_1, \ldots, i_k\) in \(f\) through \(x_{i_1}, \ldots, x_{i_k}\), we obtain an \((n-k, 1)\)-derivation-homomorphism

\[
h_{x_{i_1}, \ldots, x_{i_k}}(a_{j_1}, \ldots, a_{j_{n-k}}, b) = f(u_1, \ldots, u_n, b),
\]

where \((u_1, \ldots, u_k) = (x_{i_1}, \ldots, x_{i_k})\) and \((u_{j_1}, \ldots, u_{j_{n-k}}) = (a_{j_1}, \ldots, a_{j_{n-k}})\). By (2.19), we write (2.18) as

\[
f(a_1, \ldots, a_n, b)f(x_1, \ldots, x_n, 1) + f(x_1, \ldots, x_n, b)f(a_1, \ldots, a_n, 1) + \sum_{k=1}^{n-1} B_k = 0,
\]

where \(B_k = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} h_{x_{i_1}, \ldots, x_{i_k}}(a_{j_1}, \ldots, a_{j_{n-k}}, b)h_{x_{j_1}, \ldots, x_{j_{n-k}}}(a_{i_1}, \ldots, a_{i_k}, 1)\). It follows from (2.15), (2.17), and (2.19) that

\[
B_k = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} h_{x_{i_1}, \ldots, x_{i_k}}(a_{j_1}, \ldots, a_{j_{n-k}}, b) h_{x_{i_1}, \ldots, x_{i_k}}(a_{i_1}, \ldots, a_{i_k}, 1)
\]

\[
= \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} h_{x_{i_1}, \ldots, x_{i_k}}(a_{j_1}, \ldots, a_{j_{n-k}}, 1) h_{x_{i_1}, \ldots, x_{i_k}}(a_{i_1}, \ldots, a_{i_k}, 1)
\]

\[
\cdot h_{x_{j_1}, \ldots, x_{j_{n-k}}}(a_{i_1}, \ldots, a_{i_k}, 1)
\]

1381
From the definition of ϕ an inverse image under ϕ from \mathbb{R} to ϕ let

$$n = \begin{cases} \text{odd}, & \text{if } m = k \leq n \end{cases}$$

Now we prove the uniqueness. Suppose that there exist a Boolean n-derivation from $R_1 \times \cdots \times R_n$ to S and a homomorphism $\lambda : R_{n+1} \to Z(S)$. By (2.23), we get

$$f(a_1, \ldots, a_n, b) = \phi(a_1, \ldots, a_n)\lambda(b) = (\phi \ast \lambda)(a_1, \ldots, a_n, b).$$

Let $\phi(a_1, \ldots, a_n) = f(a_1, \ldots, a_n, 1)$ and $\lambda(b) = f(x_1, \ldots, x_n, b)$. It is obvious that ϕ is a Boolean n-derivation from $R_1 \times \cdots \times R_n$ to S and λ is a homomorphism from R_{n+1} to $Z(S)$. By (2.23), we get

$$f(a_1, \ldots, a_n, b) = \phi(a_1, \ldots, a_n)\lambda(b) = (\phi \ast \lambda)(a_1, \ldots, a_n, b).$$

Thus $B_m = 0$. Hence, $\sum_{k=1}^{n-1} B_k = 0$. Then by (2.20) we obtain

$$f(a_1, \ldots, a_n, b) = f(a_1, \ldots, a_n, b)\lambda(x_1, \ldots, x_n, 1)$$

$$(2.23)$$

Now we prove the uniqueness. Suppose that there exist a Boolean n-derivation $\phi' : R_1 \times \cdots \times R_n \to S$ and a homomorphism $\lambda' : R_{n+1} \to Z(S)$ such that $f = \phi \ast \lambda = \phi' \ast \lambda'$. Assume the identity element of S has an inverse image under f. Then there exists $(x_1, \ldots, x_n, 1) \in R_1 \times \cdots \times R_{n+1}$ such that $f(x_1, \ldots, x_n, 1) = 1$. From the definition of ϕ' and λ', it is easy to see that

$$f(x_1, \ldots, x_n, 1)\lambda'(1) - \phi'(a_1, \ldots, a_n) = 0,$$

$$\phi'(x_1, \ldots, x_n)\lambda'(1) - \phi'(a_1, \ldots, a_n) = 0,$$

$$f(x_1, \ldots, x_n)\lambda'(1)\phi'(a_1, \ldots, a_n) - \phi'(x_1, \ldots, x_n)\lambda'(1)\phi'(a_1, \ldots, a_n) = 0.$$
that is, $\phi'(a_1, \ldots, a_n)\lambda'(1) = \phi'(a_1, \ldots, a_n)$. Furthermore, we have

$$
\phi(a_1, \ldots, a_n) = f(a_1, \ldots, a_n, 1)
= (\phi' \ast \lambda')(a_1, \ldots, a_n, 1)
= \phi'(a_1, \ldots, a_n)\lambda'(1)
= \phi'(a_1, \ldots, a_n).
$$

In a similar way, we can prove that

$$
f(x_1, \ldots, x_n, 1)(\phi'(x_1, \ldots, x_n)\lambda'(b) - \lambda'(b)) = 0,
$$

which implies $\phi'(x_1, \ldots, x_n)\lambda'(b) = \lambda'(b)$. Then

$$
\lambda(b) = f(x_1, \ldots, x_n, b)
= (\phi' \ast \lambda')(x_1, \ldots, x_n, b)
= \phi'(x_1, \ldots, x_n)\lambda'(b)
= \lambda'(b).
$$

\[\square \]

In order to prove Theorem 2.8, we also need the following lemma, which can be obtained from the proof of Corollary 2 in [4].

Lemma 2.7 Let f be a mapping from $R_1 \times \cdots \times R_n$ to S, where $R_1 = \cdots = R_n = S$ is a ring. Then f is an n-homomorphism if and only if there exist pairwise commutative Boolean homomorphisms $\phi_i : R_i \to S$ for $i \in \{1, \ldots, n\}$ such that $f = \phi_1 \ast \cdots \ast \phi_n$, where $\phi_i(a_i) = f(1, \ldots, 1, a_i, 1, \ldots, 1), i = 1, \ldots, n$.

Theorem 2.8 Let f be an (n, m)-derivation-homomorphism of a ring S, that is, an (n, m)-derivation-homomorphism from $R_1 \times \cdots \times R_{n+m}$ to S, where $R_i = S$ for all $i \in \{1, \ldots, n+m\}$. Assume that the identity element of S has an inverse image. Then there exist a unique Boolean n-derivation $\phi : R_1 \times \cdots \times R_n \to S$ and a unique m-homomorphism $\lambda : R_{n+1} \times \cdots \times R_{n+m} \to Z(S)$ such that $f = \phi \ast \lambda$.

Proof Firstly we prove the existence. Fixing the first n variables in an (n, m)-derivation-homomorphism $f : R_1 \times \cdots \times R_{n+m} \to S$, we can view f as an m-homomorphism from $R_{n+1} \times \cdots \times R_{n+m}$ to S.

As the identity element of S has an inverse image, by Lemma 2.7, there exists $(x_1, \ldots, x_n, 1, \ldots, 1) \in R_1 \times \cdots \times R_{n+m}$ such that

$$
f(x_1, \ldots, x_n, 1, \ldots, 1) = 1,
$$

since

$$
1 = f(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})
= f(x_1, \ldots, x_n, x_{n+1}, 1, \ldots, 1) \cdots f(x_1, \ldots, x_n, 1, \ldots, 1, x_{n+m})
= f(x_1, \ldots, x_n, 1, \ldots, 1) f(x_1, \ldots, x_n, x_{n+1}, \ldots, 1)
\cdots f(x_1, \ldots, x_n, 1, \ldots, 1, x_{n+m})
= f(x_1, \ldots, x_n, 1, \ldots, 1) f(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})
= f(x_1, \ldots, x_n, 1, \ldots, 1).
$$
Fixing $m − 1$ variables among the last m variables in $f(a_1, \ldots, a_n, b_1, \ldots, b_m)$, we can view f as an $(n, 1)$-derivation-homomorphism. Then Lemma 2.6 implies that $f(x_1, \ldots, x_n, 1, \ldots, 1, b_1, 1, \ldots, 1) \in Z(S)$. Hence

$$f(a_1, \ldots, a_n, b_1, \ldots, b_m) = f(a_1, \ldots, a_n, b_1, 1, \ldots, 1) \cdots f(a_1, \ldots, a_n, 1, \ldots, 1, b_m)$$

$$= f(a_1, \ldots, a_n, 1, \ldots, 1) f(x_1, \ldots, x_n, b_1, 1, \ldots, 1) \cdots f(x_1, \ldots, x_n, 1, \ldots, 1, b_m)$$

$$= f(x_1, \ldots, x_n, b_1, \ldots, b_m).$$

Let

$$\phi(a_1, \ldots, a_n) = f(a_1, \ldots, a_n, 1, \ldots, 1),$$

and

$$\lambda(b_1, \ldots, b_m) = f(x_1, \ldots, x_n, b_1, \ldots, b_m).$$

It is easy to show that ϕ is a Boolean n-derivation from $R_1 \times \cdots \times R_n$ to S and λ is an m-homomorphism from $R_{n+1} \times \cdots \times R_{n+m}$ to $Z(S)$. Then by (2.24) we obtain

$$f(a_1, \ldots, a_n, b_1, \ldots, b_m) = \phi(a_1, \ldots, a_n) \lambda(b_1, \ldots, b_m)$$

$$= (\phi * \lambda)(a_1, \ldots, a_n, b_1, \ldots, b_m).$$

Now we prove the uniqueness. Suppose that there exist a Boolean n-derivation $\phi' : R_1 \times \cdots \times R_n \rightarrow S$ and an m-homomorphism $\lambda' : R_{n+1} \times \cdots \times R_{n+m} \rightarrow Z(S)$ such that $f = \phi * \lambda = \phi' * \lambda'$. Assume the identity element of S has an inverse image under f. Thus, there exists $(x_1, \ldots, x_n, 1, \ldots, 1) \in R_1 \times \cdots \times R_{n+m}$ such that

$$f(x_1, \ldots, x_n, 1, \ldots, 1) = 1.$$

From the definition of ϕ' and λ', it is easy to see that

$$f(x_1, \ldots, x_n, 1, \ldots, 1, \phi'(a_1, \ldots, a_n) \lambda'(1, \ldots, 1) - \phi'(a_1, \ldots, a_n))$$

$$= \phi'(x_1, \ldots, x_n) \lambda'(1, \ldots, 1, 1) \phi'(a_1, \ldots, a_n) \lambda'(1, \ldots, 1) - \phi'(a_1, \ldots, a_n) \lambda'(1, \ldots, 1)$$

$$= \phi'(x_1, \ldots, x_n) \lambda'(1, \ldots, 1, 1) \phi'(a_1, \ldots, a_n)$$

$$= 0.$$

Therefore, $\phi'(a_1, \ldots, a_n) \lambda'(1, \ldots, 1) = \phi'(a_1, \ldots, a_n)$. Hence, we have

$$\phi(a_1, \ldots, a_n) = f(a_1, \ldots, a_n, 1, \ldots, 1)$$

$$= (\phi' \star \lambda')(a_1, \ldots, a_n, 1, \ldots, 1)$$

$$= \phi'(a_1, \ldots, a_n) \lambda'(1, \ldots, 1)$$

$$= \phi'(a_1, \ldots, a_n).$$
Similarly, it can be checked that

\[f(x_1, \ldots, x_n, 1, \ldots, 1)(\phi'(x_1, \ldots, x_n)\lambda'(b_1, \ldots, b_m) - \lambda'(b_1, \ldots, b_m)) = 0, \]

that is \(\phi'(x_1, \ldots, x_n)\lambda'(b_1, \ldots, b_m) = \lambda'(b_1, \ldots, b_m). \) Then we get

\[
\begin{align*}
\lambda(b_1, \ldots, b_m) &= f(x_1, \ldots, x_n, b_1, \ldots, b_m) \\
&= (\phi' \ast \lambda')(x_1, \ldots, x_n, b_1, \ldots, b_m) \\
&= \phi'(x_1, \ldots, x_n)\lambda'(b_1, \ldots, b_m) \\
&= \lambda'(b_1, \ldots, b_m).
\end{align*}
\]

\[\square \]

References