On the extended spectrum of some quasinormal operators

Meltem SERTBAŞ¹*, Fatih YILMAZ²
¹Department of Mathematics, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
²Institute of Natural Sciences, Karadeniz Technical University, Trabzon, Turkey

Received: 26.10.2016 ● Accepted/Published Online: 26.01.2017 ● Final Version: 23.11.2017

Abstract: In this paper we consider some extended eigenvalue problems for some quasinormal operators. The spectrum of an algebra homomorphism defined by a compact normal operator is also investigated.

Key words: Quasinormal operators, extended eigenvalue, extended spectrum

1. Introduction

Let \(H \) be an infinite separable complex Hilbert space and denote by \(L(H) \) the set of bounded linear operators on \(H \). A complex number \(\lambda \) is said to be an extended eigenvalue of a bounded operator \(A \) if there exists a nonzero operator \(T \) such that

\[
TA = \lambda AT.
\]

\(T \) is called a \(\lambda \) eigenoperator for \(A \) and the set of extended eigenvalues is represented by \(\sigma_{ext}(A) \). This condition takes place in quantum mechanics and analysis for their spectra [6]. Moreover, there is a nonzero operator \(Y \) such that

\[
XA = AY
\]

(1.1)

and \(\varepsilon_A \) is the set of all \(X \) satisfying (1.1), and then it is easily seen that \(\varepsilon_A \) is an algebra. When \(A \) has dense range, one can define the map \(\Phi_A : \varepsilon_A \to L(H) \) by \(\Phi_A(X) = Y \) and verify that \(\Phi_A \) is an algebra homomorphism. This homomorphism is a closed (generally unbounded) linear transformation. Biswas et al. defined an eigenvalue of \(\Phi_A \) as an extended eigenvalue of \(A \) and proved that the set of extended eigenvalues of the Volterra operator \(V \) is equal to the interval \((0, +\infty)\) in [2]. Karaev gave the set of extended eigenvectors of the Volterra operator \(V \) on \(L^2[0,1] \) in [11]. However, the problem is open as to the other spectrum parts of \(\Phi_V \). Furthermore, Biswas and Petrovic derived the following result as

\[
\sigma_{ext}(A) \subset \{ \lambda \in \mathbb{C} : \sigma(A) \cap \sigma(\lambda A) \neq \emptyset \}
\]

by using the Rosenblum theorem [3] where \(\sigma(A) \) is the set of spectrum of \(A \).

An operator \(A \) is called quasinormal if \(A \) and \(A^*A \) are commutative. The purpose of this paper is to exploit a few facts about the extended eigenvalues for a quasinormal operator. Also, if \(A \) is a compact normal operator and has dense range, then the spectrum of \(\Phi_A \) has been given. Note that Cassier and Alkanjo described the extended spectrum and extended eigenspace for any pure quasinormal operator [5].

*Correspondence: m.erolsertbas@gmail.com

2000 AMS Mathematics Subject Classification: 47A10, 47A20
Throughout this work $\sigma_p(A)$, $\sigma_c(A)$, and $\sigma_{ess}(A)$ are denoted as the point spectrum, the continuous spectrum, and the essential spectrum of A, respectively.

2. Extended eigenvalues for some quasinormal operators

Lemma 2.1 Let $A \in L(H)$ be a quasinormal operator such that $0 \in \sigma_p(A)$; then $\sigma_{ext}(A) = \mathbb{C}$.

Proof Let $A = U|A|$, where U is a partial isometry and $|A|$ is the square root of A^*A such that $\text{Ker}U = \text{Ker}|A|$, be the polar decomposition of A. Since A is a quasinormal operator, $U|A| = |A|U$ is true [9]. Because $0 \in \sigma_p(A)$, there exists a nonzero element x_0 in H such that $Ax_0 = 0$ and for every $x \in H$

$$(x_0 \otimes x_0)U|A|x = (U|A|x, x_0)x_0 = (x, x_0)U|A|x_0 = U|A|(x_0 \otimes x_0)x = 0$$

is obtained. This means that $\sigma_{ext}(A) = \mathbb{C}$.

\square

Theorem 2.2 If $A : H \to H$ is a quasinormal operator but not a normal operator and $0 \notin \sigma_p(A)$, then

$$\left\{ \frac{\lambda_i}{\lambda_j} \in \mathbb{C} : \lambda_i, \lambda_j \in \sigma_p(A) \right\} \cup \{0\} \subset \sigma_{ext}(A).$$

Proof Because A is a quasinormal and not a normal operator, the equality $AA^*A = A^*AA$ is correct. Hence,

$$(AA^* - A^*A)A = 0 = 0A(AA^* - A^*A),$$

i.e. $0 \in \sigma_{ext}(A)$. On the other hand, if a complex number λ is in $\sigma_p(A)$, then $\overline{\lambda} \in \sigma_p(A^*)$. Therefore, for $\lambda_i, \lambda_j \in \sigma_p(A)$ such that $Ax_j = \lambda_j x_j$ and $A^*x_i = \overline{\lambda_i} x_i$,

$$(x_j \otimes x_i)A = \frac{\lambda_i}{\lambda_j}A(x_j \otimes x_i)$$

is provided. \square

Theorem 2.3 Letting $A \in L(H)$ be a self-adjoint operator and the essential spectrum $\sigma_{ess}(A) = \emptyset$, then $\sigma_{ext}(A) = \{\lambda \in \mathbb{C} : \sigma_p(A) \cap \sigma_p(\lambda A) \neq \emptyset\}$.

Proof If A is a self-adjoint operator on H, then $\sigma_{ess}(A)$ consists precisely of all points in $\sigma(A)$ except the isolated eigenvalues of finite multiplicity [7]. Since $\sigma_{ess}(A) = \emptyset$, the spectral problem for self-adjoint operators shows that

$$A = \sum_{n=1}^{\infty} \lambda_n P_n$$

with mutually orthogonal finite rank projection P_n, $n \in \mathbb{N}$ [12]. This fact and the proof of the previous theorem give the relation $\sigma_{ext}(A) = \{\lambda \in \mathbb{C} : \sigma_p(A) \cap \sigma_p(\lambda A) \neq \emptyset\}$. \square

The following result is obtained from the spectrum structure of a compact normal operator [10]:

1478
Corollary 2.4 Letting \(A \in L(H) \) be a compact normal operator, then
\[
\sigma_{ext}(A) = \{ \lambda \in \mathbb{C} : \sigma_p(A) \cap \sigma_p(\lambda A) \neq \emptyset \}.
\]

Theorem 2.5 Assume that \(A : H \to H \) is a compact normal operator and \(0 \in \sigma_c(A) \). For the algebraic homomorphism \(\Phi_A : \varepsilon_A \to L(H) \),
\[
\sigma(\Phi_A) = \sigma_p(\Phi_A).
\]
Proof Since \(A \) is a completely continuous normal operator with dense range, the spectral decomposition theorem implies that
\[
A = \sum_{i \geq 1} \lambda_i x_i \otimes x_i, \quad \lambda_i \to 0, \ i \to +\infty,
\]
where the set \(\{x_1, x_2, x_3, \ldots\} \) is an orthonormal basis of \(H \) and \(\{\lambda_n\} \subset \mathbb{C}[1] \). It is well known that \(\sigma(\Phi_A) \) is a closed set. Now we consider that \(\lambda \in \mathbb{C} \setminus \sigma_p(\Phi_A) \) and \(Y : H \to H \) is any bounded linear operator on \(H \). An operator \(X : H \to H \) defined by
\[
X = \sum_{n=1}^{+\infty} A(\lambda_n - \lambda A)^{-1} (Y x_n \otimes x_n)
\]
is bounded since for all \(n \in \mathbb{N} \)
\[
\left\| A(\lambda_n - \lambda A)^{-1} \right\| \leq \sup \left\{ \frac{\lambda_m}{\lambda_n - \lambda \lambda_m} : \lambda_n, \lambda_m \in \sigma_p(A) \right\} < +\infty.
\]
Moreover, \(\Phi_A(X) = \sum_{n=1}^{+\infty} \lambda_n (\lambda_n - \lambda A)^{-1} (Y x_n \otimes x_n) \) and
\[
(\Phi_A - \lambda) X = Y
\]
and it means that \(\Phi_A - \lambda \) is surjective. From the last result and Corollary 2.4, \(\lambda \) is in the resolvent set of \(\Phi_A \). \(\Box \)

Corollary 2.6 If \(A : H \to H \) is a compact operator with \(0 \in \sigma_c(A) \), then \(0 \in \sigma(\Phi_A) \).

Proof Because \(A : H \to H \) has dense range, it is obvious that \(0 \notin \sigma_p(\Phi_A) \). Besides, there exist two orthonormal sequences \(\{x_n\} \) and \(\{y_n\} \) in \(H \) and scalars \(\{\lambda_n\} \) such that \(\lambda_n \to 0 \) and \(A \) can be represented as follows:
\[
A = \sum_{n=1}^{+\infty} \lambda_n x_n \otimes y_n.
\]
In addition, it can be chosen as two subsequences \(\{\lambda_{i(n)}\}, \{\lambda_{j(n)}\} \subset \{\lambda_n\} \) satisfying
\[
\lim_{n \to +\infty} \frac{\lambda_{i(n)}}{\lambda_{j(n)}} = 0,
\]
and a linear bounded operator \(Y = \sum_{n=1}^{+\infty} y_{j(n)} \otimes y_{i(n)} \) on \(H \). If \(\Phi_A \) is surjective, then for the operator \(Y \) there is a linear bounded operator \(X : H \to H \) in \(\varepsilon_A \) and \(\Phi_A(X) = Y \). However, for all \(n \in \mathbb{N} \),
\[
X x_{i(n)} = \frac{\lambda_{j(n)}}{\lambda_{i(n)}} x_{j(n)}.
\]
which means that \(X \) is not a bounded operator on \(H \), so \(\Phi_A \) is not surjective. We have \(0 \in \sigma(\Phi_A) \) and the theorem is proved. \(\Box \)

Theorem 2.7 Let \(A \in L(H) \) be a quasinormal operator but not normal; then

\[\mathcal{D} = \{ \lambda \in \mathbb{C} : |\lambda| \leq 1 \} \subset \sigma_{ext}(A). \]

Proof In this case, \(A : H \to H \) can be written as \(A = A_n + A_p \) where \(A_n \) is a normal part and \(A_p \) is a pure quasinormal part. Therefore, the assertion of the theorem can be directly derived from Corollary 2.6 of \([5]\). \(\Box \)

Lemma 2.8 Let \(A \) be a bounded operator on any Hilbert space \(H \) and \(S \) be a unilateral shift operator on \(H^{(\infty)} = H \oplus H \oplus \ldots \). If \(T = [T_{ij}]_{i,j=1}^{\infty}, T_{ij} : H \to H \) and \(T(S \otimes A) = \lambda(S \otimes A)T \), then

i) \(T_{ij} = 0 \) for \(j > i \) and

ii) \(T_{ij}A = \lambda AT_{i-1,j-1} \) for \(i \geq j \).

Conversely, if \(T = [T_{ij}]_{i,j=1}^{\infty} \) is a bounded operator on \(H^{(\infty)} \) satisfying two conditions, \(T \) is an eigenoperator of \(S \otimes A \).

It is easily seen that \(A \) and \(B \) are bounded operators and unitary equivalent, and then \(A \) and \(B \) have the same extended eigenvalues, i.e. \(\sigma_{ext}(A) = \sigma_{ext}(B) \).

Theorem 2.9 Letting \(A \in L(H) \) be a pure quasinormal operator, then

\[\sigma_{ext}(|A|) \subset \sigma_{ext}(A). \]

Proof Let \(A = U |A| \) be the polar decomposition of the pure quasinormal operator \(A \). Because \(A \) is pure quasinormal, \(U \) is an isometry. Also, the equality

\[H = \text{Ker} U^* \oplus U(\text{Ker} U^*) \oplus U^2(\text{Ker} U^*) \oplus \ldots \]

is verified and subspaces \(U^n(\text{Ker} U^*) \), \(n \in \mathbb{N} \) are invariant under \(|A| \)[4, 8]. We claim that there exist eigenoperators for all extended eigenvalues of \(|A| \) such that they are nonzero on \(\text{Ker} U^* \) and \(\text{Ker} U^* \) invariant under eigenoperators. Supposing that \(\lambda \) is any extended eigenvalue of \(|A| \), then there exists a nonzero operator such that

\[T |A| = \lambda |A| T. \]

Moreover, where \(P_i \) are projection operators on \(U^i(\text{ker} U^*) \) for all \(i \in \mathbb{N} \), there are two projection operators \(P_n \) and \(P_m \) such that the operator \(P_nTP_m \) is nonzero. We define \(X = (U^*)^nP_nTP_mU^m \). This operator is nonzero on \(\text{Ker} U^* \) and \(\text{Ker} U^* \) invariant under \(X \) and since \(|A| \) and \(U \) are commutative, then the equality is

\[X |A| = \lambda |A| X. \]

According to [4], \(A \) is unitary equivalent \(B : (\text{Ker} U^*)^{(\infty)} \to (\text{Ker} U^*)^{(\infty)} \)

\[B := \begin{bmatrix} 0 & 0 & 0 & \cdots \\ |A| & 0 & 0 & \cdots \\ 0 & |A| & 0 & \cdots \\ \cdot & \cdot & |A| & \cdots \end{bmatrix}. \]

1480
From Lemma 2.8, $\sigma_{ext}(|A||_{KerU'}) \subset \sigma_{ext}(A)$ and the operator

$$W := \begin{bmatrix} X & 0 & 0 & \cdots \\ 0 & X & 0 & \cdots \\ \vdots & \vdots & \ddots & \cdots \end{bmatrix}$$

is nonzero. Also, $WB = \lambda BW$ holds. The last result completes the proof of the theorem.

Corollary 2.10 If A is a pure quasinormal operator, then

$$\{\lambda \mu : \lambda \in \sigma_{ext}(|A|), |\mu| \leq 1\} \subset \sigma_{ext}(A).$$

References