Restriction of a quadratic form over a finite field to a nondegenerate affine quadric hypersurface

Edoardo BALLICO*
Department of Mathematics, University of Trento, Povo, Trentino, Italy

Received: 05.12.2016 • Accepted/Published Online: 24.02.2017 • Final Version: 22.01.2018

Abstract: Let $h, h_M : F_q^n \to F_q$ be quadratic forms with h not degenerate. Fix $k \in F_q$ and set $C_n(k, h) := \{ (x_1, \ldots, x_n) \in F_q^n \mid h(x_1, \ldots, x_n) = k \}$. We compute (in many cases) the image of $h_M|_{C_n(k, h)}$. This question is related to a question on the numerical range of matrices over a finite field.

Key words: Quadratic form, finite field

1. Introduction
For any field K let $M_{n,n}(K)$ denote the set of all $n \times n$ matrices with coefficients in K. Take a field K, a nondegenerate quadratic form $h : K^n \to K$, and an $n \times n$ matrix $M = (m_{ij}) \in M_{n,n}(K)$, $i, j = 1, \ldots, n$. For any $(x_1, \ldots, x_n) \in K^n$ set $h_M(x_1, \ldots, x_n) := \sum_{i,j} m_{ij} x_i x_j$. For any $k \in K$ set $C_n(k, h) := \{ (x_1, \ldots, x_n) \in K^n \mid h(x_1, \ldots, x_n) = k \}$. Let $\text{Num}_k(M) \subseteq K$ be the set of all $h_M(x_1, \ldots, x_n)$ with $(x_1, \ldots, x_n) \in C_n(k, h)$. We came to this topic in [1], motivated to a similar set-up related to the numerical range of a matrix over a finite field introduced in [2]. We consider the case in which K is a finite field F_q and prove the following result.

Theorem 1 Take $n \geq 2$, any nondegenerate quadratic form $h : F_q^n \to F_q$, any $k \in F_q$, and any $M \in M_{n,n}(F_q)$.

(a) Assume $k = 0$. Either $\text{Num}_0(M) = \{0\}$ or $\text{Num}_0(M) = F_q$ or q is odd, $\sharp(\text{Num}_0(M)) = (q + 1)/2$ and there is $c \in F_q^*$ such that $\text{Num}_0(M)$ is the union of $\{0\}$ and all $g \in F_q^*$ such that g/c is a square.

(b) Assume $n \geq 3$ and $q \neq 2$. $\sharp(\text{Num}_k(M)) = 1$ for some $k \in F_q$ if and only if h_M is a multiple of h.

(c) Assume $\sharp(\text{Num}_k(M)) \neq 1$. If $n = 2$, then $\sharp(\text{Num}_k(M)) \geq [(q - 1)/4]$. If $n \geq 3$, then $\sharp(\text{Num}_k(M)) \geq [q/2]$.

See Example 1 for a discussion on the strength of parts (a) and (c) of Theorem 1.

See [3, Ch. 5] and [4, §22.1] for the classification of nondegenerate quadratic forms. In [1, §3] we considered the case $k = 0$ of a similar problem with instead of h the quadratic form $\sum_{i=1}^n x_i^2$, which is nondegenerate if q is odd, but it has rank 1 if q is even. For any $k \in F_q$ set $C_n(k) := \{ (x_1, \ldots, x_n) \in F_q^n \mid x_1^2 + \cdots + x_n^2 = k \}$.

*Correspondence: ballico@science.unitn.it
The author was partially supported by MIUR and GNSAGA of INdAM (Italy).
Let \(\text{Num}_k(M)\) be the set of all \(h_M(u)\) with \(u \in C_n(k)\). In Section 3 we consider the case in which we take \(x_1^2 + \cdots + x_n^2\) instead of \(h\). We improve in this case part (c) of Theorem 1 (see Proposition 3 for \(q\) odd). We give very precise descriptions of \(\text{Num}_k(M)\) when \(M\) is the matrix with a unique Jordan block (see Propositions 4, 5, and 6 for the cases \(n = 2, 3, 4\), respectively). We get \(\text{Num}_k(M) = \mathbb{F}_q\) for all \(n \geq 4\) for these matrices (Proposition 6 and Remark 6). In each case standard lemmas or reduction steps compute \(\text{Num}_k(M)\) for many matrices related to direct sums of Jordan blocks.

2. Proof of Theorem 1

For any field \(K\) set \(K^* := K \setminus \{0\}\). Let \(e_1 = (1, 0, \ldots, 0), \ldots, e_n = (0, \ldots, 0, 1)\) be the standard basis of \(\mathbb{F}_q^n\).

For each \(n > 0\) let \(I_{n \times n}\) denote the \(n \times n\) identity matrix.

Remark 1 Fix \(M = (m_{ij}), N = (n_{ij}) \in M_{n,n}(\mathbb{F}_q)\) such that \(m_{ii} = n_{ii}\) for all \(i\) and \(m_{ij} + m_{ji} = n_{ij} + n_{ji}\) for all \(i \neq j\). Then \(h_M = h_N\).

Remark 2 Fix \(k \in \mathbb{F}_q\), positive integers \(n, m, A \in M_{n,n}(\mathbb{F}_q)\), and \(B \in M_{m,m}(\mathbb{F}_q)\). Set \(M := A \oplus B \in M_{n+m,n+m}(\mathbb{F}_q)\). We have

\[
\text{Num}_k(M) = \bigcup_{x_1, x_2 \in \mathbb{F}_q, x_1 + x_2 = k} \text{Num}_{k_1}(A) + \text{Num}_{k_2}(B).
\]

For any nondegenerate \(h\) we also have

\[
\text{Num}_k(M)_{h, \mathbb{F}_q} = \bigcup_{x_1, x_2 \in \mathbb{F}_q, x_1 + x_2 = k} \text{Num}_{k_1}(A)_{h, \mathbb{F}_q} + \text{Num}_{k_2}(B)_{h, \mathbb{F}_q}.
\]

Lemma 1 For any \(n \geq 2\), any nondegenerate quadratic form \(h\), and any \(k \in \mathbb{F}_q\) we have \(\text{Num}_k(M)_{h, \mathbb{F}_q} \neq \emptyset\).

Proof We have \(\text{Num}_k(M)_{h, \mathbb{F}_q} \neq \emptyset\) if and only if \(h : \mathbb{F}_q^n \rightarrow \mathbb{F}_q\) has \(k\) in its image. Thus, \(\text{Num}_k(M)_{h, \mathbb{F}_q} \neq \emptyset\) for all \(k\) if and only if \(h\) is surjective. If \(q\) is odd, then \(h\) is surjective by [6, Theorem 4.12]. If \(q\) is even, then \(h\) is surjective by [6, Theorem 4.16].

\(\square\)

Lemma 2 Assume \(n \geq 3\) and \(q \neq 2\). The following conditions are equivalent:

\(a\) \(h_M\) is proportional to \(h\);

\(b\) there is \(k \in \mathbb{F}_q\) such that \(\sharp(\text{Num}_k(M)_{h, \mathbb{F}_q}) = 1\);

\(c\) \(\sharp(\text{Num}_k(M)_{h, \mathbb{F}_q}) = 1\) for all \(k \in \mathbb{F}_q\).

Proof By Lemma 1 we have \(\text{Num}_k(M)_{h, \mathbb{F}_q} \neq \emptyset\). For each \(t, w \in \mathbb{F}_q\) the system \(h(x_1, \ldots, x_n) - k = h_M(x_1, x_2, \ldots, x_m) - w = 0\) has a solution if and only if \(h(x_1, \ldots, x_n) - k = h_M(x_1, x_2, \ldots, x_n) - th(x_1, \ldots, x_n) - (w - tk) = 0\) has a solution. Hence, if \(h_M\) is a multiple of \(h\), then \(\sharp(\text{Num}_k(M)_{h, \mathbb{F}_q}) = 1\) for all \(k \in \mathbb{F}_q\). Now assume \(\sharp(\text{Num}_k(M)_{h, \mathbb{F}_q}) = 1\) for some \(k \in \mathbb{F}_q\). Set \(Z := \{(x_1, \ldots, x_n) \in \mathbb{F}_q^n \mid h(x_1, \ldots, x_n) = kZ^2\}\). If \(k = 0\), then \(Z\) is a quadric cone with vertex \((0 : \ldots : 0 : 1) \notin Z\) and with as a basis the smooth quadric \(\{h(x_1, \ldots, x_n) = 0\}\) of \(\mathbb{P}^{n-1}(\mathbb{F}_q)\). If \(k \neq 0\) and \(q\) is odd, then \(Z\) is a smooth quadric hypersurface, because the partial derivative \(\partial/\partial z\) of \(h(x_1, \ldots, x_n) - kZ^2\) is \(-2kz\), which vanishes only if \(z = 0\), while the partial derivatives of \(h(x_1, \ldots, x_n)\) vanish simultaneously only at \(x_1 = \cdots = x_n = 0\), because \(h\) is assumed to
be nondegenerate. If \(q \) is even, then \(Z' \) is nondegenerate for \(n \) even, while it has corank 1 if \(n \) is odd (use the canonical forms in [3, Theorem 5.1.7] or [4, §22.1]).

Claim 1: Assume \(q \) odd, \(k \neq 0 \), and \(n = 3 \). Then \(Z' \) is a hyperbolic quadric.

Proof of Claim 1: Take \(a \in \mathbb{F}_q^∗ \) such that \(-a\) is a square in \(\mathbb{F}_q \). Since all smooth conics over \(\mathbb{F}_q \) are projectively equivalent ([3, Theorem 5.1.6]), there is a linear change of coordinates such that \(h(y_1, y_2, y_3) = y_1y_2 + aky_3^2 \), where \(y_1, y_2, y_3 \) are the new linear coordinates. Hence, \(h(y_1, y_2, y_3) - k(2^2 + ag_3^2) \).

By the choice of \(a \) we have \(z^2 + ay_3^2 = w_3w_4 \) with \(w_3, w_4 \) a linear combination of \(y_3 \) and \(z \). Since \(Z' \) is nondegenerate, \(w_3 \) and \(w_4 \) are not proportional. In the coordinates \(y_1, y_2, w_3, w_4 \) the quadric \(Z' \) has the canonical form of a hyperbolic quadric.

Claim 2: For each \(u \in Z' \) there is a line \(\ell \subset Z' \) with \(u \in \ell \).

Proof of Claim 2: If \(k = 0 \), then Claim 2 is true, because \(Z' \) is a cone. If \(n \geq 4 \), then Claim 2 is true for an arbitrary quadric hypersurface. If \(n = 3 \), \(k \neq 0 \), and \(q \) is even, then Claim 2 is true, because \(Z' \) is a cone. If \(n = 3 \), \(n \neq 0 \), and \(q \) is odd, then Claim 2 is equivalent to Claim 1.

If \(h_M(u) = 0 \) for all \(u \in \mathbb{F}_q^n \), then it is a multiple of \(h \), because for \(n \geq 3 \) no homogeneous degree 2 polynomial vanishes at all points of \(\mathbb{F}_q^n \). Hence, we may assume that the quadratic function \(h_M \) induces a nonconstant map \(u : \mathbb{F}_q^n \to \mathbb{F}_q \). Since \(u \) is not constant, for each \(t \in \mathbb{F}_q \) the set \(u^{-1}(t) \) is an affine quadric hypersurface of \(\mathbb{F}_q^n \) defined over \(\mathbb{F}_q \). By assumption the affine quadric hypersurface \(C_n(k, h)_{\mathbb{F}_q} = \{h(x_1, \ldots, x_n) = k\} \) is one of the fibers of \(u \), say \(C_n(k, h)_{\mathbb{F}_q} = u^{-1}(t) \). Let \(H \subset \mathbb{F}_q^n \) be the hyperplane \(\{z = 0\} \). Take \(u \in Z \) and call \(L \) a line defined over \(\mathbb{F}_q \), contained in \(Z' \) and with \(u \in L \) (Claim 2). We have \(\sharp(L \cap Z) = q \). By assumption \(W \setminus W \cap H \supseteq L \cap Z \). Since \(\sharp(L \cap W) \geq q \geq 3 > \deg(h_M) \), we have \(L \subset W \). Hence, we see that \(W \) contains all lines of \(Z' \) intersecting \(Z \).

By Claim 2 this implies first that \(W \) has the same rank as \(Z' \) and then that \(Z' = W \). Since \(n \geq 3 \), there is \(c_1 \in \mathbb{F}_q^∗ \) such that \(h_M(x_1, \ldots, x_m) = h(x_1, \ldots, x_m) - k \).

Proof of Theorem 1. We have \(\alpha_k(M)_{h, \mathbb{F}_q} \neq 0 \) by Lemma 1.

Lemma 2 gives part (b). We take \(Z \) and \(Z' \) as in the proof of Lemma 2.

(a) Take \(k = 0 \). Taking \(0 \in \mathbb{F}_q^n \) we get \(0 \in \alpha_k(M)_{h, \mathbb{F}_q} \). Assume the existence of \(c \in \mathbb{F}_q^∗ \cap \alpha_k(M)_{h, \mathbb{F}_q} \) and take \((a_1, \ldots, a_n) \in \mathbb{F}_q^n \) such that \(h_M(a_1, \ldots, a_n) = c \). Note that for any \(t \in \mathbb{F}_q \) we have \((ta_1, \ldots, ta_n) \in Z \) and \(h_M(ta_1, \ldots, ta_n) = t^2c \). Hence, \(\alpha_k(M)_{h, \mathbb{F}_q} \) contains all elements \(x \in \mathbb{F}_q^∗ \) such that \(c/x \) is a square.

If \(q \) is even we get that either \(\alpha_k(M)_{h, \mathbb{F}_q} = \{0\} \) or \(\alpha_k(M)_{h, \mathbb{F}_q} = \mathbb{F}_q \). If \(q \) is odd we get that \(\sharp(\alpha_k(M)_{h, \mathbb{F}_q}) \in \{0, 1, q + 1/2, q\} \) and the description in part (a).

(b) From now on we fix \(k \in \mathbb{F}_q^∗ \) and we assume \(\sharp(\alpha_k(M)_{h, \mathbb{F}_q}) > 1 \). First assume \(n = 2 \). In this case \(Z \) is a nonempty affine conic whose degree 2 part has rank 2 and hence \(\sharp(Z) \geq q - 1 \). Since \(h_M \) is induced by a degree 2 polynomial and \(Z \nsubseteq h_M^{-1}(t) \) for any \(t \in \mathbb{F}_q \), each fiber of \(h_M|Z \) has cardinality \(\leq 4 \) and hence the image of \(h_M|Z \) has cardinality \(\geq [(q - 1)/4] \).

Now assume \(n \geq 3 \). By assumption \(h_M|Z \) is not a constant. Take a line \(L \subset Z' \) such that \(L \cap Z \neq \emptyset \). We have \(\sharp(L \cap Z) = q \). Since \(h_M|L \cap Z \) is induced by a polynomial of degree \(\leq 2 \), either \(h_M|L \cap Z \) is constant or each fiber of \(h_M|L \cap Z \) has cardinality at most 2. In the latter case the image of \(h_M|L \cap Z \) has cardinality \(\geq q/2 \). Thus, to conclude the proof of Theorem 1, it is sufficient to find a line \(L \subset Z' \) such that \(L \cap Z \neq \emptyset \) and \(h_M|L \cap Z \) is not a constant. We assume that no such a line exists. By assumption \(m := h_M|Z : Z \to \mathbb{F}_q \) is not constant.
Take \(o, o' \in Z \) such that \(m(o) \neq m(o') \). By Claim 2 of the proof of Lemma 2 there are lines \(L, L' \subset Z' \) such that \(o \in L \) and \(o' \in L' \). Our assumptions on the lines of \(Z' \) meeting \(Z \) imply that \(m_{|L \cap Z} \) and \(m_{|L' \cap Z} \) are constant. Let \(R \subset \mathbb{P}^n(\mathbb{F}_q) \) be the line spanned by \(\{o, o'\} \). Since \(o, o' \in Z \) and \(m(o) \neq m(o') \), our assumption on the lines contained in \(Z' \) and intersecting \(Z \) implies \(R \not\subset Z' \).

(b1) Assume \(L \cap L' = \emptyset \). In this case the linear span \(E \subset \mathbb{P}^n(\mathbb{F}_q) \) of \(L \cup L' \) has dimension 3. First assume \(E \subset Z' \). In this case the line \(R \) joining \(o \) and \(o' \) is contained in \(Z' \), a contradiction. Now assume \(E \not\subset Z' \) and so \(E \cap Z' \) is a quadric hypersurface of \(E \) defined over \(\mathbb{F}_q \). Since \(E \cap Z' \) contains two disjoint lines \((L \text{ and } L') \) either \(Z' \cap E \) is a smooth hyperbolic quadric surface or it is the union of two different planes ([4, page 4]).

(b1.1) Assume that \(Z' \cap E \) is a smooth hyperbolic quadric surface. Since \(L \cap L' = \emptyset \), \(L \) and \(L' \) are in the same ruling of \(Z' \cap E \) (call it the first ruling of \(E \cap Z \)). Since \(Z \cap E \neq \emptyset \), \(Z' \cap E \cap H \) is a divisor of bidegree \((1, 1) \), i.e. either a reducible conic or a smooth conic. For any \(a \in L \) let \(R_a \) be the line of the second ruling of \(E \cap Z' \) containing \(a \). The set \(R_a \cap L' \) is a unique point, \(b_a \), and the map \(a \mapsto b_a \) induces a bijection \(L \to L' \). Since \(\sharp(L \cap Z) = \sharp(L' \cap Z) = q > 2 \), there is \(a \in L \cap Z \) with \(b_a \in L' \cap Z \). Since \(m_{|Z \cap R_a} \) is not constant, we get a contradiction.

(b1.2) Assume that \(Z' \cap E = H_1 \cup H_2 \) with \(H_1 \) and \(H_2 \) planes. Note that this case does not occur if \(n = 3 \), because \(h \) is nonsingular. Each \(H_i \) is defined over \(\mathbb{F}_q \), because \(Z' \cap H \) contains 2 disjoint lines defined over \(\mathbb{F}_q \). Fix \(b \in H_1 \cap H_2 \subset \mathbb{P}^n(\mathbb{F}_q) \). There are lines \(L_1 \subset H_1, L_2 \subset H_2 \) defined over \(\mathbb{F}_q \), with \(L_i \neq H_1 \cap H_2 \), \(L_i \cap Z \neq \emptyset \) for all \(i \) and \(\{b\} = L_1 \cap L_2 \). Since \(m_{|Z \cap D} \) is constant for every line \(D \subset Z' \) with \(D \cap Z \neq \emptyset \), we get \(H_1 \cap H_2 \subset H \). Hence, \(H_1 \setminus H_1 \cap H_2 \subset Z \). By step (b1.1) we get that this is the case for all lines \(L, L' \) with \(Z \cap L \neq \emptyset \), \(Z \cap L' \neq \emptyset \), and \(L \cap L' = \emptyset \). In particular, for every line \(D \subset Z' \) with \(L \cap D = \emptyset \) and \(D \cap Z \neq \emptyset \), we have \(D \cap H_1 \cap H_2 \neq \emptyset \) and the plane \(U_D \) spanned by \(D \cup (H_1 \cap H_2) \) is contained in \(Z' \). Fix one such line \(D \) not contained in \(E \). In the same way we check that \(T \cap H_1 \cap H_2 \neq \emptyset \) for each line \(T \subset Z' \) with \(T \cap Z \neq \emptyset \) and either \(T \cap L' = \emptyset \) or \(T \cap D = \emptyset \) or \(T \cap L = \emptyset \). Every line \(J \) with \(J \cap L \neq \emptyset \) and \(J \cap L' \neq \emptyset \) is contained in \(E \). If \(D \cap E = \emptyset \) (we are always in this case if \(n \geq 5 \)), then we get that every line \(T \) contained in \(Z' \) and intersecting \(Z \) (i.e. not contained in \(H \)) meets the line \(H_1 \cap H_2 \), which is obviously false since \(Z' \) has rank at least \(n \geq 4 \) and every point of \(Z' \) is contained in a line contained in \(Z' \). If \(D \cap E \) is a point, \(u \), then we take instead of \(D \) a line \(D' \) with \(u \notin D', D' \subset Z', D' \cap Z \neq \emptyset \), and \(L \cap D' = \emptyset \). We get \(T \cap D' = \emptyset \) if \(T \subset E \) and \(u \in T \), and conclude using \(D' \) instead of \(D \).

(b2) Assume \(q \) odd and \(L \cap L' \neq \emptyset \). Since \(m_{|L \cap Z} \) and \(m_{|L' \cap Z} \) are constant and different functions, we have \(L \cap L' \in H \). Let \(F \subset \mathbb{P}^n(\mathbb{F}_q) \) be the plane spanned by \(L \cup L' \). \(F \) is defined over \(\mathbb{F}_q \). We have \(R \subset F \). If \(F \subset Z' \), then \(R \subset Z' \), a contradiction. Hence, \(F \cap Z' = L \cup L' \). For any \(a \in \mathbb{P}^n(\mathbb{F}_q) \setminus F \) let \(W_a \) be the 3-dimensional linear space spanned by \(F \cup \{a\} \). \(W_a \) is defined over \(\mathbb{F}_q \) and \(W_a \cap Z' \) is a quadric surface defined over \(\mathbb{F}_q \) and containing 2 intersecting lines and at least another point not in the plane they spanned. Hence, \(W_a \cap Z \) is either a hyperbolic quadric surface or an irreducible quadric cone with vertex the point \(L \cap L' \) or the union of two different planes, each of them defined over \(\mathbb{F}_q \). Since \(q \) is odd, \(Z' \) is not a cone. Since \(Z' \) is not a cone with vertex \(L \cap L' \), we may find \(a \in Z \) such that \(W_a \cap Z' \) is not a cone with vertex containing the point \(L \cap L' \). Now assume \(W_a \cap Z' = H_1 \cup H_2 \) with each \(H_i \) a plane defined over \(\mathbb{F}_q \). Since \(F \not\subset Z' \), \(H_1 \) contains one of the lines \(L, L' \) (say, it contains \(L \)) and \(H_2 \) contains the other one, \(L' \). Hence, \(L \cap L' \in H_1 \cap H_2 \). Thus, \(W_a \cap Z' \) is a cone with vertex containing \(L \cap L' \).
Now assume that $Z' \cap E$ is an irreducible hyperbolic quadric. In particular $\sharp(Z' \cap E) = (q + 1)^2$. Call I the ruling of $Z' \cap E$ containing L and II the ruling of $Z' \cap E$ containing L'. $Z' \cap E \cap H$ is a curve of bidegree $(1, 1)$ of $Z' \cap E$ and hence it is either a reducible conic (with each line defined over \mathbb{F}_q and so of cardinality $2q + 1$) or a smooth conic (and so of cardinality $q + 1$). For each $a \in Z \cap L$ (resp. $b \in L' \cap Z$) let R_a (resp. D_b) be the line in the ruling II (resp. I) containing a. All lines D_a and R_b are contained in Z', defined over \mathbb{F}_q, and each R_a meets hence D_b at exactly one point of $\mathbb{P}^n(\mathbb{F}_q)$. The restriction of m to each $Z \cap R_a$ and to each $Z \cap D_b$ is constant. The set of all $R_a \cap D_b$ is a subset of $Z' \cap H$ with cardinality q^2 and hence at least some of these points must be contained in Z, contradicting the constancy of all $m|_{R_a}$ and all $m|_{D_b}$.

(c) Now assume q even. By the proof in step (b) it is sufficient to do the case $n = 3$. Up to a linear change of coordinates we may take $h = x_1^2 + x_2^2$. Hence, Z' has equation $x_1x_2 + x_3^2 = 0$. Write $k = c^2$. We have $x_1, x_2 + x_3^2 = x_1x_2 + x_3^2 = x_12 + (x_3 + cx_2)^2$ and hence Z' is an irreducible quadric cone with vertex $w = (0 : 0 : c : 1)$. Note that $w \notin H$ and so $w \in Z$. Thus, Z is covered by lines intersecting at a point $w \in Z$. Hence, m is a constant. □

Lemma 3 Let $C \subset \mathbb{F}_q^3$ be the zero-locus of a polynomial $u \in \mathbb{F}_q[x_1, x_2]$ with degree 2 and whose homogeneous degree 2 part v has rank 2. Then $C \neq \emptyset$.

Proof Let $J \subset \mathbb{F}_q^2$ be the zero-locus of the degree 2 form $v(x_1, x_2, z)$ obtained homogenizing v. Either v is in a smooth conic (and so $\sharp(J) = q + 1$ with at least $q - 1 > 0$ points in $\mathbb{P}^2_\mathbb{F}_q$) or it contains a line defined over \mathbb{F}_q (not the line $z = 0$) and so $\sharp(C) \geq q$ or it is the union of two lines defined over \mathbb{F}_q^2 and exchanged by the map induced by the Frobenius $t \mapsto t^q$. In the latter case $\sharp(J) = 1$, but the point of J lies in C, because v has rank 2 (it is the common point of the 2 irreducible components of J over \mathbb{F}_q^3). □

Lemma 4 Let $u \in k[x_1, x_2, x_3]$ be a degree 2 polynomial whose homogeneous part v has rank at least 2. Then u induces a surjection $f : \mathbb{F}_q^3 \to \mathbb{F}_q$.

Proof There is a linear change of coordinates $\mathbb{F}_q^3 \to \mathbb{F}_q^3$ such that in the new coordinates y_1, y_2, y_3 we have $v(y_1, y_2, y_3) = u(y_1, y_2) + y_3(a_1y_1 + a_2y_2 + a_3y_3)$ with $w(y_1, y_2)$ with rank 2. Write $u(y_1, y_2, y_3) = v(y_1, y_2, y_3) + b_1y_1 + b_2y_2 + b_3y_3 + b_4$. Fix $d \in \mathbb{F}_q$. We need to find $(m_1, m_2, m_3) \in \mathbb{F}_q^3$ with $u(m_1, m_2, m_3) = d$. We take $m_3 = 0$ and apply Lemma 3. □

Lemma 5 Take $n \geq 4$, a nonzero linear form $\ell : \mathbb{F}_q^n$, and $k \in \mathbb{F}_q$. Then $\ell|_{C_n(k, h)} : C_n(k, h) \to \mathbb{F}_q$ is surjective.

Proof It is sufficient to do the case $n = 4$. Up to a linear change of coordinates it is sufficient to do the case $\ell = x_4$. Take $d \in \mathbb{F}_q$. We need to find $(x_1, x_2, x_3) \in \mathbb{F}_q^3$ such that $h(x_1, x_2, x_3, d) = k$. Since h has rank 4, the homogeneous degree 2 part of $h(x_1, x_2, x_3, d)$ has at least rank 2. Apply Lemma 4. □

Example 1 Take a nondegenerate quadratic form $h : \mathbb{F}_q^n \to \mathbb{F}_q$, $n \geq 4$, and a nonzero linear form $\ell : \mathbb{F}_q^n \to \mathbb{F}_q$. Assume $h_M = ch + \ell^2$ for some $c \in \mathbb{F}_q$. Fix any $k \in \mathbb{F}_q$. We claim the following statements:

(i) If q is even, then $\text{Num}_k(M)_{h, \mathbb{F}_q} = \mathbb{F}_q$;

(ii) If q is odd, then $\sharp(\text{Num}_k(M)_{h, \mathbb{F}_q}) = (q + 1)/2$ and $\text{Num}_k(M)_{h, \mathbb{F}_q}$ is the set of all squares in \mathbb{F}_q.

5
Indeed, it is sufficient to prove the case $h_M = t^2$, so that it is obvious that all elements of $\text{Num}_k(M)_{h,v}$ are squares and we only need to prove the opposite containment. Thus, it is sufficient to prove that the map
\[\mu = \ell_{(C_n(k,h),v)_q} : C_n(k,h)_{F_q} \to F_q \]
is surjective. Apply Lemma 5.

3. The F_q-numerical range

Remark 3 Fix $M \in M_{n,n}(F_q)$. Take $t \in F_q^*$, $k \in F_q$. If $u = (x_1, \ldots, x_n) \in C_n(k)_q$, then $tu \in C_n(t^2k)_q$ and $h_M(tu) = t^2h_M(u)$. Hence, to compute the integers $\sharp(\text{Num}_k(M)_q)$ for all k (and often to get a complete description of $\text{Num}_k(M)_q$ for all $k \in F_q$) it is sufficient to do it for $k = 1$, $k = 0$, and (if q is odd) for a single k, which is not a square in F_q (F_q has $(q-1)/2$ nonsquares for any odd prime power q).

Remark 4 For all $a, b, k \in F_q$ and all $M \in M_{n,n}(F_q)$ we have $\text{Num}_k(aM + bI_{n,n}) = a\text{Num}_k(M)_q + kb$. Write $M = (m_{ij})$, $i, j = 1, \ldots, n$, and assume that $k = c^2$ for some $c \in F_q$. Since $cc_i \in C_n(c^2)_q$ and $h_M(cc_i) = c^2m_{ii}$, we have $\{c^2m_{11}, \ldots, c^2m_{nn}\} \subseteq \text{Num}_c(M)_q$.

Lemma 6 Assume q odd and take $k \in F_q^*$. Set $\eta := 0$ if $q \equiv 1 \pmod{4}$ and $\eta := 2$ if $q \equiv -1 \pmod{4}$. Then $\sharp(C_2(k)_q) = q - 1 + \eta$.

Proof Set $T := \{(x_1, x_2, x_3) \in F^3_q \mid x_1^2 + x_2^2 = kx_3^2\}$. Since $k \neq 0$ and q is odd, T is a smooth conic defined over F_q. Thus, $\sharp(T) = q + 1$. The line $x_3 = 0$ meets T at two points (resp. no point) defined over F_q if and only if -1 has (resp. has not) a square-root in F_q, i.e. if and only if $q \equiv 1 \pmod{4}$ (resp. $q \equiv -1 \pmod{4}$).

Remark 5 Assume q even and take $k \in F_q$. Since F_q is a perfect field, there is a unique $c \in F_q$ such that $c^2 = k$. Take $u = (x_1, \ldots, x_n) \in F^n_q$. Since $(a + b)^2 = a^2 + b^2$ for all $a, b \in F_q$ we have $\sum_{i=1}^n x_i^2 = k$ (i.e. $u \in C_n(k)_q$) if and only if $x_1 + \cdots + x_n = c$.

Proposition 1 Assume q even. Take $M \in M_{2,2}(F_q)$, $M = (m_{ij})$, $i, j = 1, 2$.

(a) We have $\text{Num}_1(M)_q = \{m_{11}\}$ if and only if $m_{22} = m_{11}$ and $m_{12} = m_{21}$.

(b) We have $\text{Num}_1(M)_q = F_q$ if and only if $m_{12} = m_{21}$ and $m_{22} \neq m_{11}$.

(c) If $m_{12} \neq m_{21}$ and $m_{11} \neq m_{22}$, then $\sharp(\text{Num}_1(M)_q) = q/2$.

Proof Fix $u = (x_1, x_2) \in C_2(1)_q$, i.e. assume $x_2 = x_1 + 1$ (Remark 5). We have $h_M(u) = (m_{11} + m_{12} + m_{21} + m_{22})x_1^2 + (m_{12} + m_{21})x_1 + (m_{12} + m_{21})$. If $m_{11} + m_{22} = m_{12} + m_{21} = 0$, then $\text{Num}_1(M)_q = \{m_{11}\}$. If $m_{11} + m_{12} + m_{21} + m_{22} = 0$ and $m_{12} + m_{21} \neq 0$, then $\text{Num}_1(M)_q = F_q$. If $m_{11} + m_{12} + m_{21} + m_{22} \neq 0$ and $m_{12} + m_{21} = 0$, then $\text{Num}_1(M) = F_q$, because every element of F_q is a square. If $m_{11} + m_{12} + m_{21} + m_{22} \neq 0$ and $m_{12} + m_{21} \neq 0$, for any $\gamma \in F_q$ the polynomial $(m_{11} + m_{12} + m_{21} + m_{22})t^2 + (m_{12} + m_{21})t + (m_{12} + m_{21}) + \gamma$ has 2 distinct roots in F_q and either none of both roots are contained in F_q. Thus, $\sharp(\text{Num}_1(M)_q) = q/2$.

Proposition 2 Assume q even and take $k \in F_q^*$. Take $M = (m_{ij}) \in M_{n,n}(F_q)$.

(a) We have $\sharp(\text{Num}_k(M)) = 1$ if and only if $m_{ij} + m_{ji} = 0$ for all $i \neq j$ and $m_{ii} = m_{11}$ for all i.

(b) If $\sharp(\text{Num}_k(M)) \neq 1$, then $\sharp(\text{Num}_k(M)) \geq q/2$.

Thus, conic). Since the proof of part (b).

\[\text{Proposition 3} \]
Assume \(q \) odd and take \(k \in \mathbb{F}_q^* \) and \(M := (m_{ij}) \in M_{2,2}(\mathbb{F}_q) \).

(a) If \(k \) is not a square, assume \(q \geq 7 \). We have \(\sharp(\text{Num}_k(M)_q) = 1 \) if and only if \(m_{11} = m_{22} \) and either \(m_{12} + m_{21} = 0 \) or \(q = 3, 5 \).

(b) Assume \(\sharp(\text{Num}_k(M)_q) > 1 \). We have \(\sharp(\text{Num}_k(M)_q) \geq \lfloor (q - 1 + \eta)/4 \rfloor \) with \(\eta = 0 \) if \(q \equiv 1 \pmod{4} \) and \(\eta = 2 \) if \(q \equiv -1 \pmod{4} \).

\[\text{Proof} \]
We have \(\text{Num}_k(M)_q \neq \emptyset \). Take \(u = (x_1, x_2) \) with \(x_1^2 + x_2^2 = k \). By Lemma 6 we have \(\sharp(C_2(k)_q) = q - 1 + \eta \). The map \(u \mapsto h_M(u) \) induces a surjection \(\pi : C_2(k)_q \to \text{Num}_k(M)_q \). The map \(\pi \) is induced by the restriction to \(C_2(1, k) \) of the homogeneous quadratic equation of \(\mathbb{F}_q^2 \). Since \(C_2(k)_q \) is irreducible (even over the algebraic closure of \(\mathbb{F}_q \)), either \(\pi \) is a constant map or each of its fibers have cardinality at most 4, concluding the proof of part (b).

Now assume \(\sharp(\text{Num}_k(M)_q) = 1 \). We get that the the restriction to \(C_2(k)_q \) (i.e. taking \(x_2^2 = k - x_1^2 \)) of the function \(h(x_1, x_2) := (m_{11} - m_{22})x_1^2 + (m_{12} + m_{21})x_1x_2 - km_{22} \) is a constant function, i.e. \((m_{11} - m_{22})x_1^2 + (m_{12} + m_{21})x_1x_2 \) is constant.

(i) First assume that \(k \) is a square in \(\mathbb{F}_q \), say \(k = c^2 \). We have \(c \neq 0 \). Since \(\text{Num}_{c^2}(M)_q = c^{\text{Num}_1(M)_q} \) (Remark 4), it is sufficient to do the case \(k = 1 \). By the second part of Remark 4 we have \(\{m_{11}, m_{22}\} \subseteq \text{Num}_1(M)_q \) and thus \(m_{11} = m_{22} = 0 \). Taking \(M - m_{11}I_{2,2} \) instead on \(M \) we reduce to the case \(m_{11} = m_{22} = 0 \) by the first part of Remark 4. If \(m_{12} + m_{21} = 0 \), then \(h_M \equiv 0 \) and hence \(\sharp(\text{Num}_k(M)_q) = 1 \). If \(m_{12} + m_{21} \neq 0 \), then Proposition 4 below gives \(\sharp(\text{Num}_k(M)_q) > 1 \), unless \(q = 3, 5 \).

(ii) Now assume that \(k \) is not a square in \(\mathbb{F}_q \). Set \(E := \{(x_1, x_2, x_3) \in \mathbb{F}^2(\mathbb{F}_q) \mid x_1^2 + x_2^2 = kx_3^2\} \), so that \(C_2(k)_q = E \setminus \{x_3 = 0\} \). Write \(\text{Num}_k(M)_k = \{\alpha\} \) and set \(Z := \{(x_1, x_2, x_3) \in \mathbb{F}^2(\mathbb{F}_q) \mid m_{11}x_1^2 + m_{22}x_2^2 + (m_{12} + m_{21})x_1x_2 = \alpha x_3^2\} \). If \(Z = \mathbb{F}^2(\mathbb{F}_q) \), then \(\alpha = 0 \) and \(m_{11} = m_{22} = m_{12} + m_{21} = 0 \) and hence \(\text{Num}_k(M)_q = \{0\} \). Hence, we may assume that \(Z \) is a conic defined over \(\mathbb{F}_q \) (not necessarily a smooth conic). Since \(E \) is geometrically irreducible, either \(E = Z \) or \(\sharp(Z \cap E) \leq 4 \). Since \(\sharp(C_2(k)_q) > 4 \), then \(E = Z \). Thus, \(m_{11} = m_{22} \) and \(m_{12} + m_{21} = 0 \).

\[\text{Proposition 4} \]
Take
\[M = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \]
for some \(b \in \mathbb{F}_q^* \).

(a) If \(q \) is even then \(\sharp(\text{Num}_1(M)_q) = q/2 \); we have \(\text{Num}_1(M)_2 = \{0\} \) and \(\text{Num}_1(M)_q = b\mathbb{F}_{q/2} \) if \(q > 2 \).

(b) Assume that \(q = p^e \) is odd, \(e \geq 1 \).

(b1) Assume that either \(e \) is even or that \((p^2 - 1)/8 \) is even and that \(q \equiv 1 \pmod{4} \). Then \(\sharp(\text{Num}_1(M)_q) = (q + 3)/4 \).
(b2) Assume that either e is even or that $(p^2 - 1)/8$ is even and that $q \equiv -1 \pmod{4}$. Then $\sharp(\text{Num}_1(M)_q) = (q + 5)/4$.

(b3) Assume that e and $(p^2 - 1)/8$ are odd and that $q \equiv 1 \pmod{4}$. Then $\sharp(\text{Num}_1(M)_q) = (q - 1)/4$.

(b4) Assume that e and $(p^2 - 1)/8$ are odd and that $q \equiv -1 \pmod{4}$. Then $\sharp(\text{Num}_1(M)_q) = (q + 1)/4$.

Proof Taking $(1/b)M$ instead of M we reduce to the case $b = 1$. Take $u = (x_1, x_2)$ such that $x_1^2 + x_2^2 = 1$. We have $h_M(u) = x_1x_2$. Hence, $0 \in \text{Num}(M)_q$ and $h_M(u) \neq 0$ if and only if $x_1 \neq 0$ and $x_2 \neq 0$.

(a) Assume that q is even and so $x_2 = x_1 + 1$ and $h_M(u) = x_1^2 + x_1$. If $q \geq 4$, the function $t \mapsto t^2 + t$ is a trace-function $\mathbb{F}_q \to \mathbb{F}_{q/2}$, while $t^2 + t = 0$ if $t \in \mathbb{F}_2$. Thus, $\text{Num}_1(M)_2 = \{0\}$ and $\text{Num}_1(M)_q = \mathbb{F}_{q/2}$ if $q > 2$.

(b) Assume that q is odd. Recall that $\sharp(C_2(1)_q) = q - 1$ if $q \equiv -1 \pmod{4}$ and $\sharp(C_2(1)_q) = q + 1$ if $q \equiv 1 \pmod{4}$ (Lemma 6). If $x_1^2 + x_2^2 = 1 = y_1^2 + y_2^2$ and $x_1x_2 = y_1y_2$, then $(x_1 + x_2)^2 = (y_1 + y_2)^2$ (i.e. either $x_1 + x_2 = y_1 + y_2$ or $x_1 + x_2 = -y_1 - y_2$) and $(x_1 - x_2)^2 = (y_1 - y_2)^2$ (i.e. either $x_1 - x_2 = y_1 - y_2$ or $x_1 - x_2 = y_2 - y_1$) and hence (since 2 is invertible in \mathbb{F}_q) either $(y_1, y_2) = (x_1, x_2)$ or $(y_1, y_2) = (x_2, x_1)$ or $(y_1, y_2) = (-x_1, -x_2)$ or $(y_1, y_2) = (-x_2, -x_1)$. If $x_i \neq 0$ for all i, $x_1 \neq x_2$ and $x_1 \neq -x_2$, then the set $A := \{(x_1, x_2), (-x_1, -x_2), (x_2, x_1), (-x_2, -x_1)\}$ has cardinality 4. If $x_1 = 0$, then $x_2 = \pm 1$ and the set A has cardinality 4. The same is true if $x_2 = 0$. If $x_2 = \pm x_1 \neq 0$, then A has cardinality 2. If $x_2 = \pm x_1$ we have $x_1^2 + x_2^2 = 1$ if and only if $x_1^2 = 1/2$ and this is the case for some $x_1 \in \mathbb{F}_q$ if and only if 2 is a square in \mathbb{F}_q. Write $q = p^e$ for some $e \geq 1$. 2 is a square in \mathbb{F}_p if and only if $(p^2 - 1)/8$ is even by the Gauss reciprocity law ([5, Proposition 5.2.2]). If e is even, 2 is always a square in \mathbb{F}_p, because if a square-root of 2 is not contained in \mathbb{F}_p, then it generates $\mathbb{F}_{p^2} \supseteq \mathbb{F}_p$. If e is odd, \mathbb{F}_q has a square-root of 2 if and only if \mathbb{F}_p has a square-root of 2, because \mathbb{F}_q contains \mathbb{F}_p, but not \mathbb{F}_{p^2}. Note that there is $A \subset C_2(1)_q$ with $x_2 = x_1$ if and only if there is $A \subset C_2(1)_q$ with $x_2 = -x_1$. Thus, we counted the cardinality of the fibers of the surjection $\pi : C_2(1)_q \to \text{Num}(M)_q$ in terms of q (either all fibers have cardinality 4 or 2 have cardinality 2 and the other ones have cardinality 4). □

Proposition 4 shows that part (b) of Proposition 3 is often sharp.

Proposition 5 Take $b, b' \in \mathbb{F}_q^*$ and set

$$M = \begin{pmatrix} 0 & b & 0 \\ 0 & 0 & b' \\ 0 & 0 & 0 \end{pmatrix}$$

1. If q is even and $b = b'$, then $\sharp(\text{Num}_1(M)_q) = q/2$ with $\text{Num}_1(M)_2 = \{0\}$ and $\text{Num}_1(M)_q = b\mathbb{F}_{q/2}$ for all $q \geq 4$.

2. If q is even and $b \neq b'$, then $\text{Num}_0(M)_q = \mathbb{F}_q$.

3. If $q \equiv 1 \pmod{4}$, then $\text{Num}_1(M)_q = \mathbb{F}_q$.

Proof Taking b/b' instead of b and $1/b \cdot M$ instead of M we reduce to the case $b' = 1$. Take $u = (x_1, x_2, x_3)$. We have $h_M(x_1, x_2, x_3) = x_2(\delta x_1 + x_3)$.

(a) Assume q even and take $x_3 = x_1 + x_2 + 1$, i.e. we compute $\text{Num}_1(M)_q$. We get $h_M(x_1, x_2, x_3) = x_2((b - 1)x_1 + x_2 + 1)$. First assume $b = 1$. In this case $h_M(x_1, x_2, x_3) = x_2^2 + x_2$ and hence $\text{Num}_1(M)_q$ is the image of the trace map $x_2 \to x_2^2 + x_2$. Hence, $\sharp(\text{Num}_1(M)_q) = q/2$ with $\text{Num}_1(M)_2 = \{0\}$ and
Num_1(M)_q = bF_{q/2} for all q ≥ 4. Now assume b ≠ 1. For any c ∈ F_q take x_2 = 1, x_1 = c/(b - 1), and x_3 = x_1 + x_2 + 1.

(b) Assume q even and take x_3 = x_1 + x_2, i.e. we compute Num_0(M)_q. We have h_M(x_1, x_2, x_3) = x_2((b + 1)x_1 + x_2). Fix c ∈ F_q. Since c is a square, say c = s^2, we take x_2 = s and x_1 = 0.

(c) Assume q ≡ 1 (mod 4). Hence, there is e ∈ F_q with e^2 = -1. Take x_2 = 1 and x_3 = ex_1, so that for any x_1 we have x_1^2 + x_2^2 + x_3^2 = 1. We have h_M(x_1, x_2, x_3) = x_1(b + e) and hence h_{M|C_3(1)}_q is surjective, i.e. Num_1(M) = F_q, if b ≠ -e. Now assume b = -e. In this case we take x_2 = 1 and x_3 = -ex_1, so that for any x_1 we have x_1^2 + x_2^2 + x_3^2 = 1 and h_M(x_1, x_2, x_3) = -2ex_1. Hence, h_{M|C_3(1)}_q is surjective. □

Proposition 6 Fix k ∈ F_q and b ∈ F_q^*. Set

\[
M = \begin{pmatrix}
0 & b & 0 & 0 \\
0 & 0 & b & 0 \\
0 & 0 & 0 & b \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

Then Num_k(M)_q = F_q.

Proof Taking \(\frac{1}{b}M\) instead of M we reduce to the case \(b = 1\). If \(u = (x_1, x_2, x_3, x_4)\), then \(h_M(u) = x_1x_2 + x_2x_3 + x_3x_4\).

(a) Assume q even. Since \(x_4 = k + x_3 + x_2 + x_1\), we get \(h_M(u) = x_1x_2 + x_3^2 + x_1x_3 + kx_3\). For any \(c ∈ F_q\), take \(x_3 = 0\), \(x_1 = c\), and \(x_2 = 1\).

(b) Assume q odd.

(b1) Assume that \(k\) is a nonzero square in \(F_q\). By Remark 3 we may assume \(k = 1\). Taking \(x_1 = 1\) and \(x_2 = x_3 = x_4 = 0\) we see that \(0 ∈ Num_1(M)_q\). Set \(x_2 = 1\) and hence \(h_M(u) = x_1x_3(x_4 + x_3)\). Take \(c ∈ F_q^*\). We need to find \((x_1, x_3, x_4) ∈ F_q^3\) with \(x_1^2 + x_3^2 + x_4^2 = 0\) and \(c = x_1 + x_3(x_4 + x_3)\), i.e. \((x_3, x_4) ∈ F_q^2\) with \((c-x_3(x_4 + x_3))^2 + x_3^2 + x_4^2 = 0\). The latter is the equation of an affine degree 4 curve \(T ⊂ F_q^2\). Call \(J ⊂ P^2(F_q)\) the projective completion of its defining equation, i.e. the curve with \((cz^2 - x_3(x_4 + x_3))^2 + z^2x_3^2 + z^2x_4^2 = 0\) as its equation. If \(T ≠ \emptyset\), then we are done. Hence, we may assume \(T = \emptyset\). The line at infinity \(\{z = 0\}\) intersects \(J\) in the points \((0 : 1 : 0), (1 : -1 : 0)\), which are singular points of \(J\) with multiplicity 2 and on them lie at most 4 points over the normalization of the reduced curve \(J\); if \(J\) is geometrically irreducible with geometric genus 1, then there are at most 3 because at \((0 : 1 : 0)\) the tangent cone has \(z^2\) as its equation.

Claim 1: Over \(F_q\) \(J\) is not a union of lines (counting multiplicities) defined over \(F_q\).

Proof of Claim 1: The singular points of \(J\) are its multiple components and the intersection of its components defined over \(F_q\). At \((0 : 1 : 0)\) the equation of \(J\) has \(z^2\) as its leading part and hence the tangent cone to \(J\) at \((0 : 1 : 0)\) is \(\{z = 0\}\) counted with multiplicity 2. Hence, \(z^2\) divides the equation of \(J\), which is false.

Claim 2: \(J\) is not a union of two smooth conics defined over \(F_q^2\), but not over \(F_q\).

Proof of Claim 2: Assume that this is the case with \(J = C_1 ∪ C_2\). We have \(σ(C_1) = C_2\) and \(σ(C_2) = C_1\), where \(σ\) is induced by the Frobenius map \(t → t^q\). The singular points of \(J\) are the points \(C_1 ∩ C_2\) and \((0 : 1 : 0), (1 : -1 : 0)\) are two of these points, both defined over \(F_q\). As in the proof of Claim 1 we get that
(z = 0) is the tangent line to both C₁ and C₂ at (0 : 1 : 0). Writing y = x₃ + x₄, the multiplicity 2 part at (1 : −1 : 0) of the equation of J is x²₂(y² + z²) and so C₁ and C₂ have different tangents at (1 : −1 : 0). We get that C₁ ∩ C₂ has exactly one point (call it o) outside the line {z = 0}. Since σ(Cᵰ) = C₃₋₁, i = 1, 2, and σ fixes {{0 : 1 : 0}, {1 : −1 : 0}}, we have σ(o) = o, i.e. o ∈ ℙ²_q, i.e. T ≠ ∅, a contradiction, concluding the proof of Claim 2.

An irreducible conic defined over ℙ_q has q + 1 points ([3, Table 7.2]). Since over J \ T the normalization of J has at most 4 points, the Hasse–Weil lower bound for the number of points of a curve of genus ≤ 1 (applied if J is reducible to the connected components of its normalization) gives T ≠ ∅ if q + 1 > 2√q + 3, i.e. if q ≥ 9. All cases with q ≡ 1 (mod 4) are covered by Proposition 5. Take q = 3; u = (1, 1, 1) gives 0 ∈ Num₁(M)₃; u = (2, 2, 1, 1) gives 1 ∈ Num₁(M)₃; u = (2, 1, 1, 2) gives 2 ∈ Num(M)₃. Take q = 7; u = (0, 0, 0, 1) gives 0 ∈ Num₁(M)₇; u = (4, 2, 1, 1) gives 4 ∈ Num₁(M)₇; u = (2, 4, 1, 1) gives 6 ∈ Num₁(M)₇; u = (2, 5, 0, 0) gives 3 ∈ Num₁(M)₇; u = (3, 0, 2, 3) gives 1 ∈ Num₁(M)₇; u = (4, 3, 3, 4) gives 5 ∈ Num₁(M)₇; u = (5, 1, 1, 3) gives 2 ∈ Num₁(M)₇.

(b2) Take k = 0. u = (0, 0, 0, 0) gives 0 ∈ Num₀(M)₉. Take x₄ = −x₂ and so h_M(u) = x₁x₂. Fix c ∈ ℙ_q* and take x₂ = c/x₁. We need to find (x₁, x₃) ∈ T, where T ⊂ ℙ²_q is the affine curve xᵣ₁ + c² + x₂²x₃² = 0. Assume T = ∅ and call J ⊂ ℙ²(ℙ_q) the projective completion of the equation defining T, i.e. the curve with x₁ + z²c² + x₂²x₃² = 0 as its equation. J ∩ {z = 0} contains the points (0 : 1 : 0) (which has multiplicity 2 with x₂² as its tangent cone) and (over any extension of ℙ_q on which −1 has a root) two other points at which J is smooth. Take the affine set J⁺ := J ∩ {x₃ ≠ 0}. Taking x₃ = 1, w = cz², and y = x₁² we see that J is irreducible and that the normalization J' of J is a double covering of the rational curve y² + w² = y ramified at at most 4 points. The Hasse–Weil lower bound gives T ≠ ∅ if q + 1 > 2√q + 3, i.e. if q ≥ 9. Now assume q = 3; u = (1, 1, 0, 0) gives 2 ∈ Num₀(M)₃; u = (1, 0, 1, 1) gives 1 ∈ Num₀(M)₃. Now assume q = 5; u = (2, 1, 0, 0) gives 2 ∈ Num₀(M)₅; u = (2, 1, 2, 1) gives 1 ∈ Num₀(M)₅; u = (3, 1, 0, 0) gives 3 ∈ Num₀(M)₅; u = (3, 1, 3, 1) gives 4 ∈ Num₀(M)₅. Now assume q = 7; u = (0, 0, 0, 0) gives 0 ∈ Num₀(M)₇; to get all squares it is sufficient to prove that 4 ∈ Num₀(M)₇: take u = (6, 4, 2, 0); to get all nonsquares it is sufficient to prove that 5 ∈ Num₀(M)₇: take u = (3, 1, 2, 0).

(b3) Take as k any nonsquare. Taking x₂ = x₃ = 0 and x₁, x₄ with x₁² + x₄² = k ([3, Lemma 5.1.4]) we see that 0 ∈ Numₖ(M)₉. We adapt the proof of step (b1). Set x₂ = 1 and hence h_M(u) = x₁ + x₃(x₄ + x₃). Fix c ∈ ℙ_q*. We need to find (x₁, x₃, x₄) ∈ ℙ_q² with x₁² + x₃² + x₄² = k − 1 and c = x₁ + x₃(x₄ + x₃), i.e. (x₃, x₄) ∈ ℙ_q² with (c − x₃(x₄ + x₃))² + x₃² + x₄² = k − 1. The latter is the equation of an affine degree 4 curve T ⊂ ℙ²_q. Call J ⊂ ℙ²(ℙ_q) the projective completion of its equation, i.e. the curve with (cz² − x₃(x₄ + x₃))² + z²x₃² + z²x₄² = (k − 1)z⁴ as its equation. If T ≠ ∅, then we are done. Hence, we may assume T = ∅. The line at infinity {z = 0} intersects J in the points {{0 : 1 : 0}, (1 : −1 : 0)}, which are singular points of J with multiplicity 2 and on them lie at most 4 points over the normalization J' of the reduced curve J (at most 3 if J' is not rational). As in step (b1) we see that J is neither the union of 4 lines not defined over ℙ_q nor the union of 2 smooth conics not defined over ℙ_q. Then using the Hasse–Weil bound we get T ≠ ∅, unless q = 3, 5, 7. Take q = 3 and so k = 2; u = (1, 1, 0, 0) gives 1 ∈ Num₂(M)₃; u = (2, 1, 0, 0) gives 2 ∈ Num₂(M)₃. Now assume q = 5; we take k = 2; u = (1, 1, 0, 0) gives 1 ∈ Num₂(M)₅; u = (2, 1, 1, 1) gives 4 ∈ Num₂(M)₅; u = (2, 2, 2, 0) gives 3 ∈ Num₂(M)₅; u = (4, 1, 1, 2) gives 2 ∈ Num₂(M)₅. Now assume q = 7;
we take \(k = 3 \); \(u = (3,0,0,1) \) implies \(0 \in \text{Num}_3(M)_7 \); \(u = (0,3,1,0) \) implies \(3 \in \text{Num}_3(M)_7 \); \(u = (1,1,1,0) \) implies \(2 \in \text{Num}_3(M)_7 \); \(u = (1,1,0,1) \) implies \(1 \in \text{Num}_3(M)_7 \); \(u = (4,3,3,2) \) implies \(6 \in \text{Num}_3(M)_7 \); \(u = (3,3,3,5) \) gives \(5 \in \text{Num}_3(M)_7 \); \(u = (5,6,1,3) \) gives \(4 \in \text{Num}_3(M)_7 \).

\[\square \]

Remark 6 Fix an integer \(n \geq 5 \) and let \(M = (m_{ij}) \in M_{n,n}(\mathbb{F}_q) \) be the Jordan matrix with a unique block, i.e. \(m_{ij} = 0 \), unless \(j = i + 1, \ i = 1, \ldots, n - 1 \). Taking \(u = (x_1, \ldots, x_n) \in C_n(k)_q \) with \(x_i = 0 \) for all \(i > 4 \) we see that Proposition 5 implies \(\text{Num}_k(M)_q = \mathbb{F}_q \).

References

