Two-dimensional generalized discrete Fourier transform and related quasi-cyclic Reed–Solomon codes

Majid MAZROOEI*, Lale RAHIMI, Najme SAHAMI
Department of Mathematics, University of Kashan, Kashan, Iran

Received: 19.07.2016 • Accepted/Published Online: 18.05.2017 • Final Version: 22.01.2018

Abstract: Using the concept of the partial Hasse derivative, we introduce a generalization of the classical 2-dimensional discrete Fourier transform, which will be called 2D-GDFT. Beginning with the basic properties of 2D-GDFT, we proceed to study its computational aspects as well as the inverse transform, which necessitate the development of a faster way to calculate the 2D-GDFT. As an application, we will employ 2D-GDFT to construct a new family of quasi-cyclic linear codes that can be assumed to be a generalization of Reed–Solomon codes.

Key words: Discrete Fourier transform, partial Hasse derivative, Reed–Solomon codes

1. Introduction

The relationship between one- and two-dimensional Fourier transforms is similar in the discrete domain. Let ω be an nth root of unity in the Galois field F_q, where q is a prime power p^a. Recall that the discrete Fourier transform (DFT) of an n-bit vector $\mathbf{v} = (v_0, v_1, \cdots, v_{n-1}) \in F_q^n$, n coprime with p, is defined as follows:

$$\mathcal{F}\{(v_0, v_1, \cdots, v_{n-1})\} = (V_0, V_1, \cdots, V_{n-1}),$$

where $V_j = \sum_{i=0}^{n-1} v_i \omega^{ij}$, $j = 0, \cdots, n - 1$. The vector \mathbf{v} is related to its spectrum $\mathbf{V} = \mathcal{F}\{\mathbf{v}\}$ by

$$v_i = \frac{1}{n} \sum_{j=0}^{n-1} V_j \omega^{-ij}, \quad i = 0, \cdots, n - 1,$$

where n is interpreted as an integer of the field.

Two-dimensional Fourier transform of an $M \times N$-matrix $A = [a_{ij}] \in (F_q)^{M \times N}$, M and N relatively prime to p, is similarly defined as an $M \times N$-matrix $B = [b_{ij}]$ by

$$B_{kl} = \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} A_{ij} \alpha^{ik} \beta^{jl}, \quad k = 0, \cdots, M - 1, \quad l = 0, \cdots, N - 1,$$

where α and β are respectively an Mth root of unity and an Nth root of unity in some (sufficiently large) F_q.

*Correspondence: m.mazrooei@kashanu.ac.ir

2010 AMS Mathematics Subject Classification: Primary 42B10, 43A32; Secondary 94B05
extension of F_q. In this case, the inverse transform is given by

$$A_{ij} = \frac{1}{MN} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} B_{kl} \alpha^{-ik} \beta^{-jl}.$$

The importance of two-dimensional DFT arises when we deal with the problem of evaluating the one-dimensional DFT of a vector v having a large number of elements, on the hypothesis that the working memory of the available processor is not sufficient to handle the vector as a whole. Such a situation can arise in several applications [1,4,5,12], such as Fourier transform spectroscopy or musical sound analysis. In this case it is convenient to fold v into a matrix A and apply the two-dimensional DFT on the corresponding matrix A.

Some generalizations of the concept of (one and two-dimensional) DFT were given by earlier authors. In [3], (one and two-dimensional) generalized DFT (GFT) was introduced and some basic properties were derived. In particular, it was shown that a given one-dimensional GFT on a vector v can be performed by means of an infinite number of two-dimensional GFTs on a matrix A whose elements are the elements of v properly ordered. In [6], multidimensional generalized DFT was introduced and its characteristics were investigated while some general results were derived that included as particular cases the properties previously given in [3].

Here, the key point is that previously introduced two-dimensional GFTs have an inverse only if the characteristic of the field structuring the alphabet was zero or coprime with both M and N, where M and N denote the number of rows and columns of input matrices, respectively. To relax that condition, we shall introduce a new kind of two-dimensional DFT, called the two-dimensional generalized DFT (2D-GDFT), which in turn relies on the concept of the partial Hasse derivative of two-variable polynomials. We will show that the 2D-GDFT enjoys all basic properties of DFT analogously. As an application, using the 2D-GDFT, we will construct a family of linear codes, called quasi-cyclic Reed–Solomon codes.

2. Preliminaries

2.1. Linear codes

Linear codes are widely studied because of their algebraic structure, which makes them easier to describe than nonlinear codes.

Let $q = p^e$ be a prime power and let F_q denote the finite field of order q. A linear code C of length n over F_q is an F_q-vector subspace of F_q^n. The (Hamming) weight of a vector $c \in (F_q)^n$ is the number $w(c)$ of its nonzero coordinates. For a linear code C, the distance $d(C)$ is defined as the minimum weight of nonzero words. The distance of a code C is important to determine the error correction capability of C (that is, the number of errors that the code can correct) and its error detection capability (that is, the number of errors that the code can detect).

We denote by T the standard shift operator on F_q^n. A (linear) code is said to be quasi-cyclic of index l or l-quasi-cyclic if and only if it is invariant under T^l.

2.2. (Partial) Hasse derivatives

Recall that the uth Hasse derivative ($u = 0, 1, \cdots$) of a polynomial $f(x) = \sum_i a_i x^i \in F_q[x]$ is defined as the polynomial $f^{[u]}(x) = \sum_i \binom{i}{u} a_i x^{i-u}$. Analogously, for a bivariate polynomial $f(x, y) = \sum_{i,j} a_{ij} x^i y^j \in F_q[x, y]$,
the \((u, v)\)th partial Hasse (partial mixed) derivative of \(f\), denoted by \(f^{[[u,v]]}(x, y)\), is defined by

\[
f^{[[u,v]]}(x, y) = \sum_{i,j} \binom{i}{u} \binom{j}{v} a_{ij} x^{i-u} y^{j-v}.
\]

Here we use a standard convention for binomial coefficients: \(\binom{k}{l} = 0\) for all \(l > k\), which guarantees that the \((u, v)\)th Hasse derivative is again a polynomial over \(F_q\).

3. Two-dimensional generalized discrete Fourier transform

Let \(n = p^a m\), where \((m, p) = 1\). When \(a \geq 1\), \(n\) is no longer relatively prime to \(p\), so the classical theory of discrete Fourier transform does not apply to \(F_q[x]/(x^n - 1)\). However, Massey and Serconek [9] introduced a generalized discrete Fourier transform (GDFT) as follows.

Let \(c = \sum_{i=0}^{n-1} c_i x^i \in F_q[x]\), and let \(\zeta\) be an \(m\)th root of unity in some (sufficiently large) extension of \(F_q\).

For each \(0 \leq g \leq p^a - 1\) and \(0 \leq h \leq m - 1\), let

\[
\hat{c}_{g,h} = \sum_{i=0}^{n-1} \binom{i}{g} c_i \zeta^{h(i-g)}.
\]

Note that \(\hat{c}_{g,h} = c^{[g]}(\zeta^h)\).

Then the GDFT of \(c\) can be described in terms of a matrix:

\[
\hat{c} = [\hat{c}_{g,h}] = \begin{bmatrix}
\hat{c}_{0,0} & \hat{c}_{0,1} & \cdots & \hat{c}_{0,m-1} \\
\hat{c}_{1,0} & \hat{c}_{1,1} & \cdots & \hat{c}_{1,m-1} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{c}_{p^a-1,0} & \hat{c}_{p^a-1,1} & \cdots & \hat{c}_{p^a-1,m-1}
\end{bmatrix}.
\]

Motivated by the above definition, we give the following generalization of two-dimensional DFT.

Definition 3.1 Let \(m = p^a m'\) and \(n = p^b n'\), \(m'\) and \(n'\) relatively prime to \(p\), and assume that \(\alpha\) and \(\beta\) are the \(m'\)th root of unity and \(n'\)th root of unity in some (sufficiently large) extension of \(F_q\), respectively.

Let \(c = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} c_{i,j} x^i y^j \in F_q[x,y]\). The two-dimensional generalized discrete Fourier transform (2D-GDFT, for short) of the bivariate \(c(x, y)\) is a \(p^{a+b} \times m'n'\)-matrix \(\hat{c}\) whose the rows are indexed by all pairs \((g,h)\), \(0 \leq g \leq p^{a} - 1\) and \(0 \leq h \leq p^{b} - 1\), the columns are indexed by all pairs \((u,v)\), \(0 \leq u \leq m' - 1\) and \(0 \leq v \leq n' - 1\), and

\[
\hat{c}_{(g,h), (u,v)} = c^{[g,h]}(\alpha^u, \beta^v)
\]

\[
= \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \binom{i}{g} \binom{j}{h} c_{i,j} \alpha^{u(i-g)} \beta^{v(j-h)}.
\]

351
Proposition 3.2 Let \(c = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} c_{i,j} x^i y^j \leftrightarrow \hat{c} = [\hat{c}(g,h),(u,v)] \) be a 2D-GDFT pair, then the following are 2D-GDFT pairs:

1. \(\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \alpha^i c_{i,j} x^i y^j \leftrightarrow [\alpha^i \hat{c}(g,h),(t+u,v)] \),
2. \(\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \beta^j c_{i,j} x^i y^j \leftrightarrow [\beta^j \hat{c}(g,h),(u,k+v)] \),
3. \(\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} c_{i,j-lx^i y^j} \leftrightarrow \sum_{k=0}^{l} \binom{l}{k} \beta^{v(l-k)} \hat{c}(g,h-k),(u,v)] \),
4. \(\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} c_{i-l,j} x^i y^j \leftrightarrow \sum_{k=0}^{l} \binom{l}{k} \alpha^{u(l-k)} \hat{c}(g-k,h),(u,v) \),
5. \(\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} c_{i-j} x^i y^j \leftrightarrow \sum_{k=0}^{g-k-1} (-1)^{g-k} \sum_{r=0}^{k} \binom{g-k}{r} \sum_{i+j=n} (u+v+i+l) \hat{c}(g-k-r,h),(-u,v) \),

where \(k,l \geq 0 \) are integers and all indices are calculated modulo appropriate \(t \in \{m,n,p^a,p^b\} \).

Proof: Let \(c' = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \alpha^i c_{i,j} x^i y^j \). Then

\[
\hat{c}'_{(g,h),(u,v)} = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \binom{i}{g} \binom{j}{h} \alpha^i c_{i,j} \alpha^{u(i-g)} \beta^{v(j-h)} \\
= \alpha^i \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \binom{i}{g} \binom{j}{h} c_{i,j} \alpha^{(u+i)(i-g)} \beta^{v(j-h)} \\
= \alpha^i \hat{c}_{(g,h),(u+l,v)}.
\]

The proof of the second equality is similar to (1). To prove (3) (and similarly (4)), let \(s = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} c_{i,j-l} x^i y^j \). Then

\[
\hat{s}_{(g,h),(u,v)} = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \binom{i}{g} \binom{j}{h} c_{i,j-l} \alpha^{u(i-g)} \beta^{v(j-h)} \\
= \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \binom{i}{g} \sum_{k=0}^{l} \binom{l}{k} \binom{j-l}{h-k} c_{i,j-l} \alpha^{u(i-g)} \beta^{v(j-h)}\]
Corollary 3.3

\[\sum_{k=0}^{l} \left(\sum_{i=0}^{m-1} \sum_{r=0}^{n-1} \left(\frac{l}{k} \right) \left(\frac{m-i-1}{g} \right) \left(\frac{r}{h} \right) \alpha^{u(i-g)} \beta^{u(r+l-h)} \right) \]

which proves (5).
Theorem 3.4

Proof

By definition, we have

\[
\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} c_{i-j-k} x^i y^j \leftrightarrow \left\{ \sum_{r=0}^{l} \sum_{s=0}^{k} \binom{l}{r} \binom{k}{s} \alpha^{u(l-r)} \beta^{v(k-s)} \hat{c}_{(g-r, h-s), (u, v)} \right\}.
\]

Let \(A = [a_{ij}] \) and \(B = [b_{ij}] \) be \(m \times n \)-matrices over \(F_q \). The convolution product \(A \ast B \) is defined as an \(m \times n \)-matrix \(C \) whose

\[C_{i,j} = \sum_{k=0}^{m-1} \sum_{k=0}^{n-1} A_{i-l-j-k} B_{lk}, \]

where the indices are calculated modulo appropriate \(t \in \{m, n\} \). The following theorem describes what the 2D-GDFT will do with the convolution product.

Theorem 3.4 If \(c \leftrightarrow \hat{c} \) and \(d \leftrightarrow \hat{d} \) are 2D-GDFT pairs, then \(e = c \ast d \leftrightarrow \hat{e} \) is a 2D-GDFT pair, where for each \(0 \leq g \leq p^a - 1, 0 \leq h \leq p^b - 1, 0 \leq u \leq m' - 1, \) and \(0 \leq v \leq n' - 1 \),

\[\hat{e}_{(g,h), (u,v)} = \sum_{r=0}^{g} \sum_{s=0}^{h} \hat{e}_{(g-r, h-s), (u, v)} \hat{d}_{(r, s), (u, v)}. \]

Proof

By definition, we have

\[
\hat{e}_{(g,h), (u,v)} = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \binom{i}{g} \binom{j}{h} c_{i,j} \alpha^{u(i-g)} \beta^{v(j-h)}
= \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \binom{i}{g} \binom{j}{h} \left(\sum_{l=0}^{g} \sum_{k=0}^{h} c_{i-l-j-k} d_{l,k} \alpha^{u(i-g)} \beta^{v(j-h)} \right)
= \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \sum_{l=0}^{g} \sum_{k=0}^{h} \binom{i}{g} \binom{j}{h} c_{i-l-j-k} d_{l,k} \alpha^{u(i-g)} \beta^{v(j-h)}
= \sum_{i,j,l,k} \left(\sum_{r=0}^{g} \binom{l}{r} \binom{i-l}{g-r} \binom{j-k}{h-s} \right) d_{l,k} \alpha^{u(l-r)} \beta^{v(k-s)}
= \sum_{l=0}^{m-1} \sum_{r=0}^{l} \sum_{k=0}^{h} \binom{k}{s} c_{i-l-j-k} \alpha^{u(l-r)} \beta^{v(k-s)}
= \sum_{r=0}^{g} \sum_{s=0}^{h} \hat{e}_{(g-r, h-s), (u, v)} \hat{d}_{(r, s), (u, v)},
\]

as we claimed. \(\square \)
4. 2D-GDFT is invertible

In this section, we are going to describe the inverse 2D-GDFT clearly. For each $0 \leq i \leq p^a - 1$ and $0 \leq g \leq p^b - 1$, let

$$c_{(i,g)}(x, y) = \sum_{r=0}^{m'-1} \sum_{s=0}^{n'-1} c_{i+rp^a,g+sp^b} X^r Y^s.$$

Let $\lambda = \alpha^{p^a}$ and $\mu = \beta^{p^b}$, so that λ and μ are again m'th and n'th roots of unity, respectively. By the classical two-dimensional DFT (with λ and μ as the chosen m'th and n'th roots of unity), we have

$$c_{i+rp^a,g+sp^b} = \frac{1}{m'n'} \sum_{u=0}^{m'-1} \sum_{v=0}^{n'-1} c_{(i,g)}(\lambda^u, \mu^v) (\lambda^{-r})^u (\mu^{-s})^v.$$

Definition 4.1 The partial Hasse matrix $H(X, Y)$ is the $p^{a+b} \times p^{a+b}$-matrix whose rows and columns are indexed (and ordered lexicographically) by all pairs (r, s), $0 \leq r \leq p^a - 1$ and $0 \leq s \leq p^b - 1$, and the (i, g), (j, h)th entry is $\binom{(j)}{(i)-(h)} X^{j-i} Y^{h-g}$ (this is the (i, g)th partial Hasse derivative of the monomial $X^j Y^h$ in $F_q[X, Y]$).

By definition, we have

$$
\begin{align*}
(H(X, Y)H(-X, -Y))_{(i,g),(j,h)} & = \sum_{k=0}^{p^a-1} \sum_{l=0}^{p^b-1} \binom{k}{i} \binom{l}{g} X^{k-i} Y^{l-g} \binom{j}{k} \binom{h}{l} (-X)^{j-k} (-Y)^{h-l} \\
& = X^{j-i} Y^{h-g} \sum_{k} \binom{k}{i} \binom{j}{k} (-1)^{j-k} \sum_{l} \binom{l}{g} \binom{h}{l} (-1)^{h-l} \\
& = \binom{j}{i} \binom{h}{g} X^{j-i} Y^{h-g} \sum_{k} (-1)^{j-k} \binom{j-i}{j-k} \sum_{l} (-1)^{h-l} \binom{h-g}{h-l}.
\end{align*}
$$

Now, from the binomial expansion

$$(1-1)^w = \sum_{u \leq w} \binom{w}{u} (-1)^u = 0,$$

applied to the off-diagonal terms in the product $H(X, Y)H(-X, -Y)$, we see that the inverse of the partial Hasse matrix $H(X, Y)$ is $H(-X, -Y)$.

Before going on, we need the following simple lemma.

Lemma 4.2 Let $q = p^m$ be a prime power and F_q be a field of order q. For each $i, a, b, c \geq 0$ we have

$$\binom{a + bp^c}{i},$$

where $\binom{a}{i}$ and $\binom{a+bp^c}{i}$ are interpreted as integers of the field F_q.

355
Proof. Just note that the field F_q has characteristics p. Hence, $\alpha + b p^c$ equals α when all the quantities involved are integers. Thus, the result is obvious.

Using the previous lemma, we can write

$$
\sum_{j, h} \binom{j}{i} \binom{h}{g} \alpha^{u(j-i) \beta v(h-g)} c_{(j, h)}(\lambda^u, \mu^v) = \sum_{j, h} \sum_{r, s} \binom{j}{i} \binom{h}{g} c_{j + r p^a, h + s p^b} \alpha^{u(j + p^a - i) \beta v(h + s p^b - g)}
$$

$$= \sum_{h, s} \sum_{j, r} \binom{m-1}{i} c_{j, h + s p^b} \alpha^{u(k-i)} \binom{h}{g} \beta v(h + s p^b - g)
$$

$$= \sum_{k=0}^{m-1} \binom{k}{i} \alpha^{u(k-i)} \left(\sum_{h, s} \binom{h + s p^b}{g} c_{k, h + s p^b} \beta v(h + s p^b - g) \right)
$$

$$= \sum_{k=0}^{m-1} \binom{k}{i} \alpha^{u(k-i)} \left(\sum_{l=0}^{n-1} \binom{l}{g} c_{k, l} \beta v(l-g) \right)
$$

$$= \sum_{k=0}^{m-1} \sum_{l=0}^{n-1} \binom{k}{i} \binom{l}{g} c_{k, l} \alpha^{u(k-i)} \beta v(l-g)
$$

Hence, we have

$$H(\alpha^u, \beta^v) = \begin{bmatrix}
 c_{(0,0)}(\lambda^u, \mu^v) \\
 c_{(0,1)}(\lambda^u, \mu^v) \\
 \vdots \\
 c_{(0,p^b-1)}(\lambda^u, \mu^v) \\
 c_{(1,0)}(\lambda^u, \mu^v) \\
 \vdots \\
 c_{(1,p^b-1)}(\lambda^u, \mu^v) \\
 \vdots \\
 c_{(p^a-1,0)}(\lambda^u, \mu^v) \\
 c_{(p^a-1,1)}(\lambda^u, \mu^v) \\
 \vdots \\
 c_{(p^a-1,p^b-1)}(\lambda^u, \mu^v)
\end{bmatrix}
= \begin{bmatrix}
 \hat{c}_{(0,0)}(u,v) \\
 \hat{c}_{(0,1)}(u,v) \\
 \vdots \\
 \hat{c}_{(0,p^b-1)}(u,v) \\
 \hat{c}_{(1,0)}(u,v) \\
 \vdots \\
 \hat{c}_{(1,p^b-1)}(u,v) \\
 \vdots \\
 \hat{c}_{(p^a-1,0)}(u,v) \\
 \hat{c}_{(p^a-1,1)}(u,v) \\
 \vdots \\
 \hat{c}_{(p^a-1,p^b-1)}(u,v)
\end{bmatrix}.
$$

Since the partial Hasse matrix is invertible, the above equality can be rewritten as
we can construct the RS codes from another fruitful method, the DFT approach ([2], Section 6), which enables any element in their original paper [10]. RS codes have optimal parameters and can be efficiently decoded [7,11,13].

Reed–Solomon codes (RS codes) are a class of error-correcting cyclic codes proposed by Reed and Solomon in 1960. A family of quasi-cyclic codes prime to GRS pairs

Therefore, the 2D-GDFT is invertible.

5. A family of quasi-cyclic codes

Reed–Solomon codes (RS codes) are a class of error-correcting cyclic codes proposed by Reed and Solomon in their original paper [10]. RS codes have optimal parameters and can be efficiently decoded [7,11,13].

Considering a vector space of polynomials f such that $f(m) = 0$ for all m in the set $B = \{\alpha^{r_0}, \alpha^{r_0+1}, \cdots, \alpha^{r_0+n-k-1}\}$, we can define an RS code of length n and dimension k over the finite field F_q. Here α can be any element in F_q of multiplicative order at least n where n is a divisor of $q - 1$. The key point here is that we can construct the RS codes from another fruitful method, the DFT approach ([2], Section 6), which enables us to introduce our generalization of such codes.

Definition 5.1 Let $d \geq 2$, $m = p^a m'$, and $n = p^b n'$, where $a, b \geq 0$ are integers and m', n' are relatively prime to p. Consider the subspace C^* consisting of all matrices $c \in (F_q)^{m \times n}$ whose $c_{(g,h),(u,v)} = 0$ for all pairs (g,h) and (u,v) in which $0 \leq v \leq n' - 2$. A generalized RS code C of block length mn over F_q, denoted $\text{GRS}_{m,n,d}$, will be defined as the set of all words $c \in C^*$ whose $c_{(g,h),(u,n'-1)} = 0$ for all pairs (g,h) and all pairs $(u,n'-1)$ in which u belongs to a specified block of $d - 1$ consecutive integers, denoted $\{z_0, z_0 + 1, \ldots, z_0 + d - 2\}$, i.e. $0 \leq z_0 \leq u \leq z_0 + d - 2 \leq m' - 1$.

Note that, by definition, we obtain a code whose elements are matrices, which can be viewed as vectors of length mn, by reading them column by column. It is easy to verify that $\text{GRS}_{m,n,d}$ is an $[mn,p^{a+b}(m' - d + 1)]$-linear code.

In the following, $B_{z_0,d}$ stands for the set

$$\{(u,n'-1) \mid z_0 \leq u \leq z_0 + d - 2\} \cup \{(u,v) \mid 0 \leq u \leq m' - 1, \ 0 \leq v \leq n' - 2\}$$

and will be called the defining set of the code $\text{GRS}_{m,n,d}$.
Proposition 5.2 The code $GRS_{m,n,d}$ is a quasi-cyclic code of index m.

Proof Suppose that $c = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} c_{i,j} x^i y^j$ is a word of $GRS_{m,n,d}$. Hence, $\hat{c}_{(g,h),(u,v)} = 0$ for all pairs (g,h) and for each pair $(u,v) \in B_d$. Thus,

$$\sum_{k=0}^{n-1} \binom{n-1}{k} b^{c(n-1-k)} \hat{c}_{(g,h-k),(u,v)} = 0$$

for all pairs (g,h) and for each pair $(u,v) \in B_d$. Therefore, by proposition 3.2(3), the 2D-GDFT of the word $c' = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} c_{i,j-1} x^i y^j$ is equal to zero in those columns (u,v) in which $(u,v) \in B_d$, proving that c' is a word of $GRS_{m,n,d}$, as desired. \qed

Next, the minimum distance of the code $GRS_{m,n,d}$ is going to be discussed.

Proposition 5.3 The minimum distance of the code $GRS_{m,n,d}$ satisfies

$$n'd \leq d_{\min}(GRS_{m,n,d}) \leq p^{a+b}(m'n' - m' + d - 1) + 1.$$

Proof Without loss of generality, we can suppose $z_0 = m' - d + 1$. Otherwise, use proposition 3.2(1) to translate the defining set $B_3_{m',d}$ to $B_m - m'-d+1,d$, thereby multiplying each codeword component by a power of α, which does not change the weight of a codeword because components that were nonzero remain nonzero.

Suppose that $c = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} c_{i,j} x^i y^j$ is a nonzero word of $GRS_{m,n,d}$. For any $0 \leq i \leq p^a - 1$ and $0 \leq g \leq p^b - 1$, let

$$C_{(i,g)}(x) = \sum_{u=0}^{m'-1} c_{(i,g)}(\lambda^u, \mu^{n'-1}) x^u,$$

where $c_{(i,g)}$, λ, and μ are defined as in Section 4. Recall that

$$c_{(i,g)}(\lambda^u, \mu^v) = \sum_{k=0}^{p^a-1} \sum_{l=0}^{p^b-1} \binom{l}{i} \frac{(k)}{g} (-\alpha)^k i (-\beta)^l (-g) \hat{c}_{(k,l),(u,v)}.$$

On the other hand, $\hat{c}_{(k,l),(u,v)} = 0$ for all $0 \leq k \leq p^a - 1$, $0 \leq l \leq p^b - 1$, and $(u,v) \in B_{m'-d+1,d}$, showing that $c_{(i,g)}(\lambda^u, \mu^v) = 0$ for each pair $(u,v) \in B_{m'-d+1,d}$. Therefore, the polynomial $C_{(i,g)}(x)$ is either zero or has degree at most $m' - d$. Since $c \neq 0$, we can find a nonzero polynomial $C_{(i,g)}(x)$ for some $0 \leq i \leq p^a - 1$ and $0 \leq g \leq p^b - 1$. Some of the components of the codeword c are $c_{i+r p^a s, g + s p^b} = \frac{(n'-s)^{p^a-1}}{m'^{p^a-1}} C_{(i,g)}(\lambda^{r s})$, $r = 0, \ldots, m' - 1$, and $s = 0, \ldots, n' - 1$. Since $C_{(i,g)}(x)$ is a polynomial of degree at most $m' - d$, it can have at most $m' - d$ zeros. Hence, for any $0 \leq s \leq n' - 1$, there will be at least d index r such that $c_{i+r p^a s, g + s p^b} \neq 0$. Consequently, $w(c) \geq td$ where t is the number of those pairs (i,g) whose $C_{(i,g)}(x) \neq 0$. Thus, $d_{\min}(GRS_{m,n,d}) \geq m'n' - (m' - d)n' = n'd$. The right side of the inequality will be obtained from the Singleton bound for linear codes. This completes the proof. \qed
Example 5.4 Let \(q = 4, m = 6, \) and \(n = 5 \). Choosing \(\alpha^5 \) and \(\alpha^3 \) as the fifth and third roots of unity in the Galois field \(F_4 = \{ a_0 + a_1 \alpha + a_2 \alpha^2 + a_3 \alpha^3 \mid a_i \in F_2, \alpha^4 = \alpha + 1 \} \), the 2D-GDFT of a bivariate polynomial \(c = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} c_{i,j} x^i y^j \) is given by the matrix \(\hat{c} \) whose
\[
\hat{c}_{(g,h),(u,v)} = c^{[g,h]}(\alpha^5 u, \alpha^3 v) = \sum_{i=0}^{5} \sum_{j=0}^{4} \binom{i}{g} \binom{j}{h} c_{i,j} \alpha^{5u(i-g) + 3v(j-h)}.
\]
Now, let \(d = 1 \). Then the code GRS\(_{6,5,1}^1\) is a linear \([30, 9]\)-quasi-cyclic code of minimum distance 16 (http://www.codetables.de). This shows that good quasi-cyclic codes can be constructed via our algebraic approach, as in [9], where such codes have been constructed using integer linear programming and a heuristic combinatorial optimization algorithm based on a greedy local search.

6. Conclusion
We generalized and studied the 2D-GDFT, which enables us to apply the powerful concept of 2D-DFT on data matrices for which the number of rows or columns is not necessarily coprime with the field characteristic. Our generalized 2D-DFT enjoys the basic properties of the original one. As an application, we introduced a family of quasi-cyclic linear codes, denoted by GRS\(_{m,n,d}^d\), which are a natural generalization of the classical Reed–Solomon codes, and the code parameters were described.

References