List of encyrtids (Hymenoptera: Encyrtidae) from subalpine and alpine zones of Lagodekhi protected areas with new records from Georgia and Transcaucasia

George JAPOSHVILI1,2*, Meri SALAKAIA2, Giorgi KIRKITADZE3, Marine BATSANKALASHVILI1
1Invertebrate Research Center, Tbilisi, Georgia
2Institute of Entomology, Agricultural University of Georgia, Tbilisi, Georgia

Received: 27.01.2016 ● Accepted/Published Online: 29.06.2016 ● Final Version: 04.04.2017

Abstract: Two genera, Coelopencyrtus Timberlake, 1919 and Mayrencyrtus Hincks, 1944, are reported here for the first time from Transcaucasia. Fourteen new records of encyrtid species from Georgia are reported. Except for 4 species (Bothriothorax araliius Walker, 1837); B. clavicornis Dalman, 1820; B. trichops Thomson, 1876; and Cheiloneurus submuticus Thomson, 1876), all species are recorded for the first time from Transcaucasia.

Key words: Chalcidoidea, Coelopencyrtus, Mayrencyrtus, Transcaucasia, distribution

The family Encyrtidae represents one of the most important groups of biological control agents for insects occurring as plant pests. They are, together with the family Aphelinidae, successfully used against many pest species, especially scale insects (Hemiptera, Coccoidea) (Noyes, 1985; Nikolskaya and Yasnosh, 1966). Encyrtids are very small insects (about 0.8–2.5 mm) and therefore they are insufficiently studied, although they are a major component of many terrestrial ecosystems and may constitute up to 20% of all insect species (LaSalle and Gauld, 1991; Godfray, 1994; Memmott et al., 1994).

Encyrtids from Georgia were included in the list of encyrtids from Transcaucasia by Trjapitzin (1968), where 74 species were listed. Later Japoshvili (2000) updated the list of Encyrtidae and the number of encyrtids increased to 144, and then to 176 (Japoshvili and Noyes, 2005; Japoshvili 2007a, 2007b, 2015). Information about the host and distribution for each species can be found from Noyes (2015).

This study represents part of the material collected in the Lagodekhi protected areas using Malaise traps during the whole growing season of 2014. Malaise traps in the Lagodekhi protected areas were set following vertical zonal characteristics: 1. Low zone of forest (450–750 m), 2. Middle zone of forest (750–1250 m), 3. High zone of forest (1250–1800 m), 4. Subalpine forest (1800–2000 m), 5. Subalpine fields and shrublands (2000–2500 m), 6. Alpine zone (above 2500 m). Here we present the encyrtid fauna of the subalpine and alpine zones in the Lagodekhi protected areas.

In collecting material, we concentration on the alpine and subalpine areas, as the chance of novelty was higher. Collection began on 2 April 2014 and lasted until 7 November 2014, although in the alpine and subalpine areas collection was started later (subalpine: 5 May 2014; alpine: 23 May 2014) and completed earlier (6 October 2014), due to climate conditions and altitude. Material was collected every 10 (+2) days and placed first in 96% alcohol, and then it was sorted, critical point-dried, and mounted according Noyes (2015). The subalpine site was located at 41°53.883′N, 46°20.033′E, elevation 2225 m; the alpine site was at 41°54.371′N, 46°20.004′E, elevation 2558 m.

Malaise traps were obtained from BandN Entomological Services (http://www.entomology.org.uk/). Containers were filled with 80% ethanol and were checked and replaced every 10 days. Material was then transferred to the laboratory and critical point-dried, and mounted according Noyes (2015). The subalpine site was located at 41°53.833′N, 46°20.033′E, elevation 2225 m; the alpine site was at 41°54.371′N, 46°20.004′E, elevation 2558 m.

Species and genera recorded for the first time for Transcaucasia are marked with an asterisk. Genera and species recorded for the first time from Georgia are marked with two asterisks. All voucher specimens are deposited in the entomological collection of the Agricultural University of Georgia, Tbilisi, Georgia.
List of new records (H5 = subalpine; H6 = alpine)

Bothriothorax Ratzburg, 1844
Bothriothorax aralius (Walker, 1837)
Material examined: 25.07.–05.08.2014, 1♀, (H5).
Distribution: Palearctic.
Bothriothorax clavicornis (Dalman, 1820)
Material examined: 15–27.09.2014, 2♀♂, (H6);
25.06.–05.07.2014, 3♀♂ (H6).
Distribution: Palearctic.
Bothriothorax trichops Thomson, 1876
Material examined: 05–15.07.2014, 1♀, (H5); 15–25.08.2014, 1♀, (H6).
Distribution: Europe and Transcaucasia.

Cheiloneurus Westwood, 1833

Cheiloneurus submuticus Thomson, 1876
Material examined: 15–25.07.2014, 1♀, (H5); 05–15.08.2014, 1♀.
Distribution: Palearctic.

Syrphophagus Ashmead, 1900
Distribution: Iran, Morocco (Noyes, 2015).

15–25.07.2014, 1♀ Material examined:
Ooencyrtus nigerrimus Ferriére and Voegelé, 1961
Ashmead, 1900
Europe.
Distribution: Turkmenistan (Noyes, 2015).

15–27.09.2014, 3♀♂ Material examined:
Mayrencyrtus imandes Hincks, 1944

15–25.07.2014, 1♀, (H5); 26.07–05.08.2014, 1♀, (H6); 05–15.08.2014, 5♀♂, 1♂, (H6).
Distribution: Palearctic.

Ericydus Haliday, 1832
Ericydus karakalensis Myartseva, 1980
Material examined: 05–15.08.2014, 1♀, (H6).
Distribution: Turkmenistan (Noyes, 2015).

Mayrencyrtus Hincks, 1944

Mayrencyrtus inandans (Walker, 1837)
Material examined: 15–25.07.2014, 1♀, (H5); 26.07–05.08.2014, 1♀, (H6); 05–15.08.2014, 5♀♂, 1♂, (H6).
Distribution: Palearctic.

Erichthys Westwood, 1837

Erichthys floridanum (Dalman, 1820)
Material examined: 23.05.–13.06.2014, 1♀, (H6).
Distribution: Europe.

Erichthys annulipes (Thomson, 1876)
Material examined: 23.05.–13.06.2014, 1♀, (H6).
Distribution: Europe.

Erichthys orientalis (Myartseva, 1981)
Distribution: Turkmenistan (Noyes, 2015).

*Tetracnemus Westwood, 1837

Tetracnemus diversicornis Westwood, 1837
Material examined: 05–15.08.2014, ♀, (H6).
Distribution: Palearctic.

Besides the species listed above, the following 30 species were also found during our studies: Adelencyrtus aulacaspis (H6); Anagyrus galinae (H5, H6); Aphycus apicalis (H6); Blastothrix longipennis (H6); B. sericea (H5); Cerchysius subplanus (H6); Cheiloneurus claviger (H6); Copidosoma agrotis (H5, H6); C. cervius (H5, H6); C. floridanum (H5, H6); C. truncatellum (H5, H6); Dinocaris alpina (H6); Eriophyes siphylus (H5, H6); E. strigosus (H6); Heleconatus citripes (H6); Homatolotyus flaminius (H5, H6); Metaphycus zebratus (H5, H6); Microterys nieteri (H6); M. tessellatus (H5, H6); Ooencyrtus telenica (H6); Prionomitus mitratus (H5, H6); Prochiloneurus bolivari (H5); P. pulchellus (H6); Syrphophagus aeruginosus (H5, H6); S. aphidivorus (H5, H6); S. ariantes (H5, H6); S. pertiades (H5, H6); Trichomasthus albimanus (H5); T. ivericus (H5); Zaonma lambinus (H6).

Fourteen new species records from Georgia are given, and among them ten are also new records from Transcaucasia. Two new genera for Transcaucasia are recorded as well. The number of encyrtids of Georgia thus increases to 191, although this is just part of our study and more new records will be obtained after examination and identification of all the material, which will be published in future papers. More new records (7) and more species (39) were recorded from the alpine site; 5 new records are represented from both sites and 3 species from only the subalpine site; the total number of species recorded from the subalpine site was 25. Finally, 44 species were recorded from both the subalpine and alpine sites.

Acknowledgments
We would like to express our gratitude to Dr Benjamen Normark (Department of Biology, University of Massachusetts, Amherst, MA, USA) for his kind help to improve the paper and correct the English. Special thanks to Mr Giorgi Sulamanidze, director of the Lagodekhi protected areas (Georgia) for his kind help during the survey and to Dr Khatuna Tsiklauri (Agency of Protected Areas, Georgia) for her support in obtaining permission to work in the reserve. This study was done with the financial support of the Shota Rustaveli National Science Foundation (Ref. FR221/7-110/13).
References

