Antioxidant defenses in three vesper bats (Chiroptera: Vespertilionidae) during hibernation

Ekaterina ANTONOVA*, Viktor ILYUKHA, Svetlana SERGINA, Evgeniy KHIZHKIN, Vladimir BELKIN, Alina YAKIMOVA, Artem MOROZOV
Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia

Abstract: Hibernation of bats is characterized by considerable changes in the oxygen supply during the torpor–arousal cycles. The purpose of this study was to examine the antioxidant defenses in tissues of the hibernating bats (Eptesicus nilssonii, Myotis brandtii, and Plecotus auritus), attempting to relate the tissue antioxidant protection with the ecophysiological characteristics of the studied species. We found that the superoxide dismutase (SOD) activity in the heart and the catalase activity in the skeletal muscle were higher in E. nilssonii than in P. auritus and in M. brandtii. In comparison with studied hibernating bats, P. auritus had the lowest activities of SOD and catalase in the heart. In addition, the level of glutathione was higher in the liver, kidneys, and muscle in M. brandtii than in the corresponding tissues of both P. auritus and E. nilssonii. We conclude that the differences in the mechanisms of adaptation to hibernation of bats are the result of various ecophysiological characteristics among species.

Key words: Hibernation, Eptesicus nilssonii, Myotis brandtii, Plecotus auritus, adaptation, catalase, superoxide dismutase, glutathione

Received: 28.02.2017 • Accepted/Published Online: 16.08.2017 • Final Version: 21.11.2017

1. Introduction
Mammalian hibernators represent a unique model for the study of adaptation to changes in oxygen consumption (Carey et al., 2003; van Breukelen and Martin, 2015). Physiological parameters such as metabolism and oxygen supply are reduced during torpor (Storey, 2010; Yin et al., 2016). However, torpor is replaced by periods of intensive metabolic activity (arousal), which are characterized by quick warming of the organism (Carey et al., 2003; Storey, 2010). The great burst of reactive oxygen species (ROS) in mitochondrial respiration during the torpor-arousal cycles of bats may lead to the oxidative damage to sensitive tissues (Carey et al., 2003; Sanderson et al., 2013; Yin et al., 2016). The glutathione (GSH) and antioxidant defense enzymes (superoxide dismutase (SOD) and catalase) reduce the effects of ROS (Galano and Alvarez-Idaboy, 2011; Conde-Pérezprina et al., 2012).

Along with numerous studies on torpid ground squirrels (Sciuridae) (Toien et al., 2001; Carey et al., 2003; Astaeva and Klichkhanov, 2009; Orr et al., 2009; Storey, 2010; James et al., 2013) there are very few data on the antioxidant status in bats (Wilhelm Filho et al., 2007; Lilley et al., 2014; Yin et al., 2016). Some authors (Wilhelm Filho et al., 2007; Yin et al., 2016) consider that bats are likely to cope with oxidative stress through effective antioxidant defenses during hibernation. However, the findings demonstrated from field studies stem from small data sets or a single bat species or organ (Wilhelm Filho et al., 2007; Conde-Pérezprina et al., 2012; Lilley et al., 2014; Yin et al., 2016).

Among the five vesper (Vespertilionidae) bat species, including Eptesicus nilssonii, Myotis brandtii, Myotis daubentonii, Myotis mystacinus, and Plecotus auritus, that hibernate in Karelia, E. nilssonii inhabits regions further north than the other bats (Belkin et al., 2015). The present research focuses on the activities of antioxidant enzymes and the GSH content in tissues (liver, kidney, heart, lungs, and skeletal muscle) of three species of bats (E. nilssonii, M. brandtii, and P. auritus) in the deep torpid state (February–March).

2. Materials and methods
2.1. Animals and tissue collection
The experimental protocols were approved by the special permission of the Local Ethic Committee of the Institute of Biology. The animals were captured in the Republic of Karelia (61–63°N, 30–36°E) in February–March of 2016 under the terms of permits issued by the Game Management Directorate of the Republic of Karelia (10№ 00011). The easily differentiated species were identified...
visually (Plecotus auritus and Eptesicus nilssonii), whereas Myotis brandtii was examined for the position of the wing membrane attachment to the hind limb—the main trait for in situ differentiation between species in the myotis group. Differentiation between M. brandtii and M. mystacinus was performed based on the analysis of craniological material and penis shape (for males) (Schober and Grimmberger, 1997). The three species of vesper bats were weighed, and then induced to a hibernating state in a cold room (4–7 °C). Samples of fresh tissue of torpid bats—E. nilssonii (2 males and 10 females), M. brandtii (1 male and 2 females) and P. auritus (1 male and 2 females)—were analyzed. Samples of the liver, kidneys, heart, lung, and pectoral muscle of bats were obtained after decapitation of animals, placed in Eppendorf tubes, and stored at −80 °C until analyzed.

2.2. Antioxidant enzyme activities

2.2.1. Superoxide dismutase (EC 1.15.1.1)

The total SOD activity was measured by the adrenochrome method based on the spontaneous autoxidation of epinephrine with the formation of product with an absorbance peak at 480 nm (Misra and Fridovich, 1972). This reaction depends on the presence of superoxide anions and is specifically inhibited by SOD. The amount of enzyme that caused 50% inhibition of epinephrine autoxidation is defined as 1 unit (U). SOD activity was expressed as U per mg protein after normalization with estimated total protein in milligrams in the respective tissues.

2.2.2. Catalase (EC 1.11.1.6)

The catalase activity was evaluated by measuring the decrease in H₂O₂ concentration at 240 nm (Bears and Sizes, 1952). One enzyme unit (IU) is defined as the amount of catalase capable of transforming 1.0 µmol of H₂O₂ for a minute. Catalase activity was expressed as IU per mg protein after normalization with estimated total protein in milligrams in the respective tissues.

2.3. Total protein assay

Results for antioxidant enzymes’ activities were standardized to total soluble protein content in tissue homogenates. Total tissue protein content was determined by the method described by Lowry et al. (1951) using bovine serum albumin as standard.

2.4. Glutathione measurement

The level of GSH was measured using the Ellman method (Sedlak and Lindsay, 1968). The GSH levels are presented in µmol GSH per 1 g of wet tissue (see Sergina et al., 2015 for details).

2.5. Treatment of data

Statistical analysis was carried out using the nonparametric Mann–Whitney U-test. Differences between species were considered to be significant when the P value was less than 0.05.

3. Results

3.1. Antioxidant enzyme activities

No significant differences in the SOD activity were found among hibernating bats for the liver, kidneys, lungs, and skeletal muscle (Figure 1). In the heart the SOD activity of E. nilssonii was higher (P < 0.05) as compared to the same tissue of P. auritus and M. brandtii. Among the studied tissues in bats the skeletal muscle exhibited the highest SOD activity (Figure 1).

There were no significant differences in the catalase activity among bat species for the liver, kidneys, lungs, or skeletal muscle. However, the heart catalase activity was lower (P < 0.05) in P. auritus than in other mammals studied. In comparison with studied hibernating bats (P. auritus and M. brandtii), E. nilssonii had higher catalase activity in the skeletal muscle (Figure 2).

3.2. Glutathione

Results of the GSH assay are summarized in the Table. In M. brandtii, the GSH content was higher (P < 0.05) in the liver, kidneys, and skeletal muscle as compared to the same tissues of both P. auritus and E. nilssonii. Level of GSH was significantly lower (P < 0.05) in the liver and skeletal muscle of E. nilssonii than in the corresponding tissues of both P. auritus and M. brandtii.

4. Discussion

Significant differences were found in antioxidant defenses among the three species of vesper bats. Previously it was shown (Lyman, 1970) that bats maintain very high oxygen supply when active, a characteristic that contrasts with the quick changes in oxygen consumption when they become torpid. Generation of ROS depends on mitochondrial oxygen supply (Boveris, 1977) and is followed by simultaneous antioxidant defenses in mammals (Wilhelm-Filho et al., 2007). Our results demonstrated that E. nilssonii differs from the other bat species, especially regarding higher (P < 0.05) the SOD activity in the heart and the catalase activity in the skeletal muscle but lower level of GSH in liver and skeletal muscle. In addition, the P. auritus had the lowest activity of SOD and catalase in the heart compared to the other bat species sampled. Wilhelm-Filho et al. (2007) have documented that the antioxidant capacities were higher in torpid little yellow-shouldered bats (Sturnira lillium) in comparison with active bats. It is suggested that this antioxidant response reduces oxidative stress during the daily transformation from torpid to the active state in S. lillium (Wilhelm-Filho et al., 2007).

To provide an adequate level of antioxidant capacity, bats, like other hibernating mammals, preferred for low-molecular antioxidants (Wilhelm-Filho et al., 2007). Our results showed that in M. brandtii the GSH content in the liver, kidneys, and skeletal muscle were higher (P < 0.05) than in P. auritus and E. nilssonii. It is assumed
that the GSH system is a key defense mechanism against oxidative damage by increasing the production of ROS (Cantú-Medellín et al., 2011). The ratio between reduced and oxidized glutathione species (GSSG/GSH) increased during reoxygenation (Yin et al., 2016). In accordance with previous results, M. brandtii had significantly higher glutathione S-transferase activity (GST) and ratio of GSH/GSSG in blood compared to E. nilssonii, P. auritus, M. daubentoni, and M. mystacinus (Lilley et al., 2014). GST is connected with biotransformation of exogenous...
Our results demonstrated that the skeletal muscle of bats has higher SOD activity compared with other tissues. It has previously been shown that there is a comparatively low degree of muscle dystrophy in hibernating mammals in comparison with the artificial models of muscle resting (Hudson and Franklin, 2002). A variety of mechanisms promote the resistance of bats to muscle atrophy, including enhanced antioxidant defenses (James et al., 2013). In accordance with previous results, the torpid S. tridecemlineatus had significantly higher antioxidant capacity of muscle compared to summertime specimens (James et al., 2013). Presumably, skeletal muscles during hibernation feature high rates of aerobic oxidation of lipids, which provide thermogenesis during arousal (Storey, 2010). Previously it was shown (Armstrong et al., 1977) that all fibers of M. lucifugus muscle possessed high myofibrillar ATPase activities and aerobic potentials, indicating fast contractile properties.

In summary, understanding the defense mechanisms against ROS formation and organ injury during torpor–arousal cycles may provide insights into possible methods of treatment for organ injury during cold storage (Jani et al., 2013). Significant differences were found among bat species for SOD and catalase activities and GSH content in the tissues studied. We found that the SOD activity in the heart and the catalase activity in the skeletal muscle were higher in E. nilssonii than in P. auritus and in M. brandtii. In addition, P. auritus had lower activity of SOD and catalase in the heart compared to the other vesper bat species sampled. The GSH level was significantly higher in the liver and skeletal muscle in M. brandtii than in P. auritus and E. nilssonii. We conclude that the differences in the mechanisms of adaptation to hibernation of bats are the result of various ecophysiological characteristics among species. Obviously, further more extensive research (including other species of bats and physiological parameters) is necessary to clarify their antioxidant protection with their ecophysiological characteristics.

Acknowledgments
This work was supported by the state order [project number 0221-2014-0031 and project number 0221-2014-0037]; Russian Foundation for Basic Research [grant number 16-34-00283]. The study was conducted using the facilities of the Equipment Sharing Centre of the Institute of Biology, Karelian Research Centre of Russian Academy of Sciences.

Table. The GSH content (μmol/g wet tissue) in the tissues of bats.

<table>
<thead>
<tr>
<th>Species</th>
<th>Liver</th>
<th>Kidney</th>
<th>Heart</th>
<th>Lungs</th>
<th>Skeletal muscle</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. brandtii</td>
<td>35.59 ± 5.30</td>
<td>63.66 ± 3.36</td>
<td>-</td>
<td>17.17 ± 2.82</td>
<td>28.87 ± 4.13</td>
</tr>
<tr>
<td>P. auritus</td>
<td>24.91 ± 0.37</td>
<td>40.11 ± 3.64</td>
<td>42.65</td>
<td>34.22</td>
<td>23.86 ± 5.23</td>
</tr>
<tr>
<td>E. nilssonii</td>
<td>16.56 ± 2.30</td>
<td>46.57 ± 2.93</td>
<td>31.32 ± 4.07</td>
<td>22.09 ± 1.93</td>
<td>19.81 ± 1.08</td>
</tr>
</tbody>
</table>

♦ Significant difference from M. brandtii, ◊ from P. auritus in the same tissue. ♦, ○ P < 0.05. The GSH content was not measured in the heart of M. brandtii.

compounds, reducing the effects of oxidative stress and endogenous intoxication (Lilley et al., 2014). As noted earlier, Carey et al. (2003) demonstrated that during arousal the rate of metabolism increases to near normal levels. Perhaps during bats’ arousal the intensification of circulation processes and excretion from the kidneys and other organs to the blood of different metabolites of low-molecular antioxidants make the blood compartment part of a first antioxidant front in bats (Wilhelm-Filho et al., 2007). Moreover, previous studies have demonstrated that the GSH content in blood of the Syrian hamster (Mesocricetus auratus) is increased by awakening (Ohta et al., 2006).

The differences in the antioxidant capacity among the studied species can be explained by ecophysiological characteristics of vesper bat species and indicate that M. brandtii, E. nilssonii, and P. auritus have different defense mechanisms against ROS formation during torpor–arousal cycles. E. nilssonii lives in colder areas with a shorter photoperiod and hibernation of this species occurs at lower temperatures (2.0 ± 0.1 °C) and relative humidity (78.0 ± 0.6%) as compared with other species of bats (M. brandtii, P. auritus, and M. daubentoni), affirming that this species is well adapted to the north’s severe conditions (Siivonen and Wermundsen, 2008; Belkin et al., 2015). In contrast, M. brandtii hibernated in the warmer and more comfortable locations and used both energy-saving ways (crevices and clusters) for torpor (Siivonen and Wermundsen, 2008). Previously it was shown (Anufriev and Revin, 2006) that E. nilssonii has longer torpor duration than P. auritus and M. daubentoni in similar natural environments. Furthermore, E. nilssonii typically hibernated on the ceiling/wall (without using any energy-saving ways), whereas M. brandtii and P. auritus preferred crevices (Siivonen and Wermundsen, 2008).

In summary, understanding the defense mechanisms against ROS formation and organ injury during torpor–arousal cycles may provide insights into possible methods of treatment for organ injury during cold storage (Jani et al., 2013). Significant differences were found among bat species for SOD and catalase activities and GSH content in the tissues studied. We found that the SOD activity in the heart and the catalase activity in the skeletal muscle were higher in E. nilssonii than in P. auritus and in M. brandtii. In addition, P. auritus had lower activity of SOD and catalase in the heart compared to the other vesper bat species sampled. The GSH level was significantly higher in the liver and skeletal muscle in M. brandtii than in P. auritus and E. nilssonii. We conclude that the differences in the mechanisms of adaptation to hibernation of bats are the result of various ecophysiological characteristics among species. Obviously, further more extensive research (including other species of bats and physiological parameters) is necessary to clarify their antioxidant protection with their ecophysiological characteristics.
References

