Education, Health, and Economic Growth Nexus: A Bootstrap Panel Granger Causality Analysis for Developing Countries

Hüseyin ŞEN (http://orcid.org/0000-0002-9833-824X), Department of Public Finance, Ankara Yıldırım Beyazıt University, Turkey; e-mail: hsen@ybu.edu.tr

Ayşe KAYA (http://orcid.org/0000-0002-7025-1775), Department of Public Finance, İzmir Kâtip Çelebi University, Turkey; e-mail: ayse.kaya@ikc.edu.tr

Barış ALPASLAN (http://orcid.org/0000-0002-7908-1557), Department of Public Finance, Ankara Yıldırım Beyazıt University, Turkey; e-mail: balpaslan@ybu.edu.tr

Abstract

This paper studies an empirical analysis of the causality between education expenditure, health expenditure, and economic growth for the selected eight developing countries (Argentina, Brazil, Chile, India, Indonesia, Mexico, South Africa, and Turkey) over the period 1995-2012. For this purpose, we employ the Bootstrap Panel Granger Causality test. Our findings indicate that only in two of eight developing countries (Brazil and Mexico) there exists a significant and positive causality, running from education and health expenditure to economic growth. However, we found a significant but negative causality among education expenditure, health expenditure, and economic growth for Indonesia. For the rest of the countries that we consider in this paper, no causality was found between these variables.

Keywords: Education and Health Expenditure, Economic Growth, Developing Countries, Bootstrap Panel Granger Causality Analysis.

JEL Classification Codes: I15, I25, O11, E62.

Öz

1 We are grateful to László Kónya for providing his TSP codes, which we adapted for our analysis. We would also like to thank Arusha Cooray for helpful suggestions on an earlier version of this paper.

2 Analizlerimizde kullanıldığımiz TSP kodlarını bizimle paylaştığımuz László Kónya’ya minnettarız. Ayrıca, bu makalenin daha önceki versiyonuna yapmış olduğu katkılar için de Arusha Cooray’a teşekkür borçluyuz.
1. Introduction

In the history of development economics, no matter how developed countries are, the question of how countries can boost economic growth has been a controversial and much-disputed subject for more than a half-century. In fact, the discussions, which have focused on the role of human capital in economic growth, have grown in importance with endogenous growth models since the mid-1980s. In particular, the existence of a possible interplay between education, health, and economic growth has received an increased interest among researchers and policymakers. Indeed, education and health, which are commonly regarded as a considerable component of human capital accumulation, play a key role, as a catalyst, in a structural change in a society and economic transformation, and stimulate long-run economic growth not only in low-income countries but also in many developed countries.

Education is, for instance, learning and training process by which an individual acquires skills and knowledge. It is also regarded as a tool in promoting economic efficiency and social cohesion. Furthermore, countries with individuals who have a higher level of education can adopt imported technologies and develop technological innovation, thus fostering economic growth and development in the long-run. Moreover, a higher level of education increases marginal productivity of physical capital and labor force, and therefore promotes national income of a country. On the other hand, as reported by World Bank (1993), good health may affect economic growth in a number of aspects: firstly, good health eliminates production losses which can result from illness; secondly, it raises a number of children enrolled in school and performing better in a cognitive and learning task; thirdly, it creates an opportunity for individuals to use existing resources, which would otherwise have to be spent on treating illness. Last, but by no means least, individuals with good health have higher income and contribute to a country’s income by boosting productivity.

So far, however, there has been a large volume of published papers that have only captured the role of either education or health in economic growth and the direction of causality between these variables has been a controversial and much-disputed subject within the field. This paper, therefore, intends to make a contribution and to provide a value-added to the existing empirical literature in a number of aspects: Firstly, unlike previous studies in the literature which focus only on one-way causality between either education or health and economic growth, in this paper three-way causality between these variables is empirically analyzed. Secondly, we employ a more fitting approach to our analysis, the bootstrap panel causality test proposed by Kónya (2006), which allows us to capture cross-sectional dependence and heterogeneity across countries under consideration. Finally, we focus on a group of developing countries: Argentina, Brazil, Chile, India, Indonesia, Mexico, South Africa, and...
Turkey, which have almost similar growth and development patterns, over the period 1995-2012.

The remainder of the paper is organized as follows: Section 2 reviews the related theoretical and empirical literature. Section 3 describes the analytical framework in which model specification, data set, and estimation strategy are presented, whereas Section 4 reports the empirical findings of the paper. And finally, Section 5 offers concluding remarks.

2. Literature Review

The role of education and health in the process of growth, as well as economic development, has been recent of primary importance. In the context of endogenous growth models, Romer (1986) and Lucas (1988) are well-known examples of studies that focused mainly on the role of human capital in economic growth. For instance, Lucas (1988) considered human capital as a cumulative variable with positive externalities and as the main driving force behind economic growth. In other words, the main idea behind his argument is that individuals with a higher level of education will be more efficient and more productive in their work life. Moreover, education will enhance productivity, not only through the acquisition of skills individuals obtain but also through promoting physical capital and the adoption of technological development.

A large body of recent research suggests that educational attainment is, in fact, a key driver of the acquisition of skills, better employment outcomes, individuals and country’s well-being, and therefore economic growth [see, for example, Romer (1989), Barro (1991), Barro and Lee (1993), Benhabib and Spiegel (1994), Islam (1995), Barro and Sala-i-Martin (1995), Gemmell (1996), Sala-i-Martin (1997), Hanushek and Kimko (2000), Bils and Klenow (2000), Kruger and Lindahl (2001), Sianesi and Reenen (2003)]. On the other hand, as Bloom et al. (2004), Sala-i-Martin et al. (2004), Gyimah-Brempong and Wilson (2004), Jamison et al. (2005), and Weil (2007) remind us; good health improves human welfare as well as labor productivity, and positively affects economic growth in both developing and industrial countries. Conversely, a large number of studies, for instance, UNAIDS (2004), UN (2005), McDonald and Roberts (2006), and WHO (2007), have documented the adverse effects of particular diseases such as malaria, HIV/AIDS, influenza pandemic, which is the case especially in low-income countries, as well as in many other countries. Numerous studies, such as Strauss and Thomas (1998), Wang and Taniguchi (2003), Hoddinott et al. (2005), and Jensen and Lleras-Muney (2012) also emphasize that inadequate nutrition, malnutrition, inadequate consumption of protein, energy, and vitamin, smoking, and drinking, which are all closely linked to child and adult mortality, may cause poor health, which results in low level of labor productivity and shortens life expectancy, and therefore have an adverse, indirect effect on economic growth.

It may be possible, however, that these effects are overestimated or underestimated due to indirect effects of education on health or vice versa. For instance, in his very recent work, Agénor (2012) reported that good health and nutrition may help children perform better in
a cognitive and learning task, which increases school enrolment and educational attainment. Similar arguments have been also done in several previous studies, such as Behrman (1996), Bloom et al. (2004), Ahmed and Arends-Kuenning (2006), and Bleakley (2007). Numerous studies have also attempted to explain that longer life expectancy as a result of improved health conditions increases the propensity to save and allows individuals to invest more in education and to be more productive, which therefore has a growth-enhancing effect [see, for instance, Zhang et al. (2003), Miguel and Kremer (2004), Soares (2006), Jayachandran and Lleras-Muney (2009), Agénor (2012)]. On the other hand, several studies have investigated the effect of education outcomes on health; the studies carried out by Tamura (2006) and Agénor (2012) are well-known examples of this point. For instance, Agénor (2012) as well as some other studies, such as Hurt et al. (2004), Arendt (2005), Albouy and Lequien (2009), and Clark and Royer (2013), suggest that individuals with better education are well-informed about nutritional and health risks not only for their own health but also for their family members, especially for their children and spouses.

In reviewing the empirical literature, to a large extent, the research has, however, tended to focus on one-way causality between either education or health and economic growth. Indeed, a large and growing body of literature has mostly used a single-equation approach to estimate the impact of either variable, namely, education or health on economic growth. For instance, Barro and Lee (1993) employed a set of panel data to estimate the determinants of economic growth, physical investment, and human capital accumulation as well as fertility for 129 countries over five-year periods from 1960-1985. Based on the findings of their study, educational attainment has a considerable explanatory power on economic growth. In other words, education is positively correlated with economic growth. In the same vein, Benhabib and Spiegel (1994) used Cobb-Douglas aggregate production function with physical and human capital stocks and estimated cross-country growth-accounting regressions using Ordinary Least Squares (OLS) with Heteroscedasticity-consistent covariance method for the period 1965-1985. Unlike the findings of Barro and Lee (1993), they concluded that human capital is insignificantly correlated with per capita growth rates. However, in an alternative model they developed, human capital stock plays a significant role in the growth rate of total factor productivity.

What is more, Cheng and Hsu (1997) used the Johansen cointegration test and Granger causality technique by Hsiao (1981) to study the causality between human capital and economic growth in Japan for the period 1952-1993. They found a bi-directional causality between human capital and economic growth. In other words, the findings of their study showed that an increase in human capital has a growth-enhancing effect; at the same time, economic growth positively affects human capital. Likewise, In and Doucouliagos (1997), who applied a Granger causality test to a new data set and used the canonical cointegration regression estimation approach, found a bi-directional causality between the human capital formation and economic growth in the US over the period 1949-1984.
Using pooled aggregate data, Freire-Serén (2002) estimated the equations of the dynamic system to investigate the relationship between human capital and economic growth for the Spanish regions over the period 1964-1991. According to their study, human capital positively accounts for income growth and vice versa, indicating the existence of two-way causality between human capital and income growth. Furthermore, Nomura (2007) estimated the model by Mankiw et al. (1992) for a sample of 85 countries over the period 1960-1999. Based on the OLS regression method, the findings of the study reveal that the contribution of human capital to economic growth matters more and is statistically significant especially in the countries where a low level but higher quality of education exists. In the similar vein, Tsamadias and Prontzas (2012) followed the model by Mankiw et al. (1992) to analyze the effect of education on economic growth in Greece during the period 1960-2000 and showed a significant and positive effect on economic growth during the period for which the study was carried out.

A recent study by Boccanfuso et al. (2013) used the analytical model developed by Islam (1995), who considered a panel data analysis to study cross-country growth convergence over the period 1960-1985, and introduced a new type indicator of human capital to show the importance of the qualitative aspects of human capital and to analyze the question of whether human capital has a growth enhancing effect for a sample of 22 African countries using panel data over the period 1970-2000. According to the findings of their study, human capital plays a positive role in the process of economic growth and convergence for the African countries. Another recent study by Uneze (2013), implemented panel cointegration and causality testing approaches for 13 Sub-Saharan Africa countries during the period 1985-2007 and found a bi-directional causality between capital formation and economic growth.

On the other hand, a large and growing body of literature has investigated the link between health and growth [see, for example, Fogel (1994), Barro (1997), Sachs and Warner (1997), Bloom and Williamson (1998), Bhargava et al. (2001), Mayer-Foulkes (2001), Gyimah-Brempong and Wilson (2004), Bloom et al. (2004), and Eide and Showalter (2011)]. For instance, Barro (1997) used a panel data of around 100 countries over the period 1960-1990. His study indicated that higher initial schooling and life expectancy have a growth-enhancing effect. In the same vein, Bhargava et al. (2001) used a panel data analysis and studied the effects of health indicators, such as adult survival rates on GDP growth rates at 5-year intervals for a number of countries. They found that adult survival rates have a positive impact on GDP growth rates in low-income countries. What is more, to investigate the role of health status in productivity, Rivera and Currais (1999) used an extended version of the Solow model, which is closely related to the model by Mankiw et al. (1992), and run a log-linear equation which is estimated using the OLS with White’s heteroscedasticity-consistent covariance estimation method for OECD countries during the period 1960-1990. The results of this study support the previous research underlining the fact that health has a positive impact on economic growth.
Mayer-Foulkes (2001) applied Barro’s (1995) convergence model to a five-yearly database to explore the long-term effect of health on economic growth in Mexico during the period 1950-1995. In this study, health improvements were found to cause permanent income increments in this country during the aforementioned period. The findings of Mayer-Foulkes (2001) are consistent with those of the study by Fogel (1994) who reported that better nutrition and health account for a third of economic growth in Great Britain over the last 200 years. Another study on the OECD countries by Hartwig (2010) investigated the role of health capital formation in GDP growth for a sample of 21 OECD countries over the period 1970-2005 by applying a panel Granger causality method. Interestingly, the findings of his study are, however, not consistent with those of other studies in the existing empirical literature, which revealed that human capital accumulation in the form of health affects long-term economic growth.

A more recent study by Cooray (2013) employed both the OLS and Generalized Method of Moments (GMM) to analyze the differential effects of health on economic growth for a sample of 210 countries using panel data over the period 1990-2008. The results for the full sample showed that health capital has no robust and significant effect on economic growth, unless through their interactions with health expenditure and education. However, based on the countries divided by income groups, health capital had no robust impact on economic growth in high and upper-middle income economies whereas in low and low-middle-income countries it had a statistically significant impact only through their interaction with education and health expenditure.

To the best of our knowledge, Li and Liang (2010) is perhaps the most relevant study to our paper. Based on an augmented version of Mankiw et al. (1992) model, they empirically investigated the sources of economic growth for a group of East Asian economies using a panel dataset over the period 1961 to 2007. According to their findings, the effects of the human capital in the form of both health and education on economic growth are statistically significant not only for the whole sample but also for the sub-sample period. Their study also considers the sub-sample estimation of the post-1997 Asian financial crisis for comparison purposes. Their findings suggest that it is more plausible for policymakers in East Asia to invest more in health than in education.

All the studies reviewed so far have, however, overlooked three-way causality between education, health, and economic growth. This paper therefore shows and critically evaluates a good awareness of the existing literature to identify unexplored/unsolved issues that are both theoretically interesting and real-world relevant in the methodological approach to analyzing this for a group of selected developing countries. We now turn to dataset and estimation strategy.
3. Data Set and Estimation Strategy

3.1. Data Set

In this study, we used annual data abstracted from the World Development Indicators database of the World Bank for the selected eight developing countries—Argentina, Brazil, Chile, India, Indonesia, Mexico, South Africa and Turkey. The dataset covers the period spanning from 1995 to 2012.

There are several reasons why we have considered in particular these countries: Firstly, in comparison to other developing countries, they are all fast-growing countries. Secondly, despite their different economic structures as well as their policies and political systems, they have recently made a remarkable economic progress, which makes it possible for these countries to be among the world’s largest and most powerful economies in the near future. Thirdly, except Chile, they are all a member of G-20 countries and are more likely to have a significant voice in their own geographic region and a growing global influence in the time to come. Finally, although these countries have recently shown a sustainable rate of growth, albeit below the world’s average, and proved an economic take-off in recent years, their role in contributing to adopting new technologies is still limited, which enables us to study an in-depth analysis of the effect of education and health on human capital accumulation and therefore on economic growth.

In reviewing the empirical literature, as noted earlier, most of the studies rely on two-way causality between either education or health and economic growth. However, we consider three-way causality between these three variables. For this purpose, in this paper, we use education expenditure and health expenditure (as a share of GDP), and annual GDP growth as a measure.

3.2. Estimation Strategy

In general, there are three estimation methods that can be implemented in examining the direction of causality in a panel data: The first approach is based on estimating a panel vector error correction model (VECM) by means of a GMM estimator that estimates a panel model by eliminating the fixed effect. However, this approach accounts neither for heterogeneity nor for cross-sectional dependence. A second approach proposed by Hurlin (2008) presents a panel data causality test which does account for slope heterogeneity but disregards cross-sectional dependence; even so, substantial biases and size distortions may occur. However, the third approach proposed by Kónya (2006) allows us to study both heterogeneity and cross-sectional dependence.

Overall, we believe that Kónya’s (2006) approach has three superiorities over other alternative approaches: Firstly, this approach is based on the seemingly unrelated regression (SUR) estimation which considers cross-sectional dependence across countries. Secondly,
based on the Wald test with country-specific bootstrap critical values, this approach does not require the joint hypothesis for all members of a panel. And finally, considering the fact that unit root tests may suffer from low power, it requires no pre-testing for unit roots and any cointegrating relationships.

In the light of all the methods reviewed above, this paper follows the bootstrap panel Granger causality test proposed by Kónya (2006), which considers cross-section dependency and cross-country heterogeneity. On the basis of country-specific bootstrap critical values, this method allows us to test the Granger causality for each individual country by taking into account the possible contemporaneous correlation across countries. A brief account of the econometric models used in this paper is presented below:

3.2.1. Cross-Sectional Dependence

To investigate the existence of cross-sectional dependence, we employ three different tests: Lagrange multiplier test statistic of Breusch and Pagan (1980) for cross-sectional dependence and two cross-sectional dependence test statistics of Pesaran (2004), one based on Lagrange multiplier and another based on the pair-wise correlation coefficients.

The first is the Lagrange Multiplier (LM) test developed by Breusch and Pagan (1980) which requires the estimation of the following panel data model:

\[Y_{it} = \alpha_i + \beta_i X_{it} + \mu_{it} \] \hspace{1cm} [1]

for \(i = 1, 2, 3, \ldots, N; \ t = 1, 2, 3, \ldots, T \)

where \(i \) is the cross-section dimension; \(t \) is the time dimension; \(X_{it} \) is \(k \times 1 \) vector of explanatory variables, while \(\alpha_i \) and \(\beta_i \) are the individual intercepts and slope coefficients that are allowed to differ across states.

In the LM test, the null hypothesis of no cross-sectional dependence \(H_0: \text{Cov} (\mu_{it}, \mu_{jt}) = 0 \) for all \(t \) and \(i \neq j \) is tested against the alternative hypothesis or cross-sectional dependence \(H_1: \text{Cov} (\mu_{it}, \mu_{jt}) \neq 0 \) for at least one pair of \(i \neq j \).

For testing null hypothesis, the Lagrange multiplier test statistic for cross-sectional dependence \((CD_{BP}) \) of Breusch and Pagan (1980) is given by:

\[CD_{BP} = T \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\rho}_{ij}^2 \] \hspace{1cm} [2]
where, \(\hat{\rho}_{ij}^2 \) is the estimated correlation coefficient among the residuals obtained from the individual OLS estimation of Equation 1. Under the null hypothesis, the LM statistic has an asymptotic chi-square distribution with \(N(N-1)/2 \) degrees of freedom.

However, Pesaran (2004) indicates that the CD\(_{BP}\) test has a drawback when \(N \) is large, implying that it is not applicable when \(N \rightarrow \infty \). To overcome this problem, the following Lagrange multiplier statistic for the cross-sectional dependence (CD\(_{LM}\)) was developed by Pesaran (2004). The CD\(_{LM}\) statistic is given as follows:

\[
CD_{LM} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} (T \hat{\rho}_{ij}^2 - 1)} \quad [3]
\]

Under the null hypothesis of no cross-sectional dependence with \(T \rightarrow \infty \) and then \(N \rightarrow \infty \), CD\(_{LM}\) asymptotically follows a normal distribution.

On the other hand, CD\(_{LM}\) test is likely to indicate substantial size distortions when \(N \) is large relative to \(T \). Pesaran (2004), therefore, proposes a new test for cross-sectional dependence (CD) that can be used where \(N \) is large and \(T \) is small. The CD statistic is calculated as follows:

\[
CD = \sqrt{\frac{2T}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\rho}_{ij}} \quad [4]
\]

According to Pesaran (2004) under the null hypothesis of no cross-sectional dependence with \(T \rightarrow \infty \) and \(N \rightarrow \infty \) in any order, the CD test is asymptotically normally distributed.

However, Pesaran et al. (2008) state that while the population average pair-wise correlations are zero, the CD test will have less power. Therefore, they propose a bias-adjusted test that is a modified version of the LM test by using the exact mean and variance of the LM statistic. The bias-adjusted LM statistic is calculated as follows:

\[
CD_{adj} = \sqrt{\frac{2T}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\rho}_{ij} - \frac{(T-k)\hat{\rho}_{ij}^2}{\sqrt{u_{Tij}^2}} - \frac{u_{Tij}}{v_{Tij}^2}} \quad [5]
\]

where \(u_{Tij} \) and \(v_{Tij}^2 \) are the exact mean and variance of \((T-k)\hat{\rho}_{ij}^2 \), which are provided by Pesaran et al. (2008). Under the null hypothesis of no cross-sectional dependence with \(T \rightarrow \infty \) first followed by \(N \rightarrow \infty \), the results of the CD\(_{adj}\) test follow an asymptotic standard normal distribution.
3.2.2. Slope Homogeneity Tests

The standard F test is the most widely used way to test the null hypothesis of slope homogeneity H_0: $\beta_i = \beta$ for all i against the hypothesis of heterogeneity H_1: $\beta_i \neq \beta_j$ for a non-zero fraction of pair-wise slopes for $i \neq j$. This requires that the explanatory variables are strictly exogenous, and the error variances are homoscedastic. In order to relax the assumption of homoscedasticity in the F test, Swamy (1970) developed the slope homogeneity test that examines the dispersion of individual slope estimates from a suitable pooled estimator.

Pesaran and Yamagata (2008) state that both the F test and Swamy’s test require panel data models where N is relatively small compared to T. Therefore, they propose a standardized version of Swamy’s test (Δ test) for testing slope homogeneity in large panels. The Δ test is valid when $(N, T) \rightarrow \infty$ without any restrictions on the relative expansion rates of N and T when the error terms are normally distributed. Swamy’s statistic can then be modified as:

$$S = \sum_{i=1}^{N} (\hat{\beta}_i - \hat{\beta}_{WFE})' X_i' M T X_i \frac{(\hat{\beta}_i - \hat{\beta}_{WFE})}{\hat{\sigma}_i^2}$$

where $\hat{\beta}_i$ is the pooled OLS estimator; $\hat{\beta}_{WFE}$ is the weighted fixed effect pooled estimator of the Equation 1; M_T is an identity matrix of order T and $\hat{\sigma}_i^2$ is the estimator of σ_i^2.

Pesaran and Yamagata (2008) then developed the following standardized dispersion statistic:

$$\Delta = \sqrt{N} \left(\frac{N^{-1}S - k}{\sqrt{2k}} \right)$$

Under the null hypothesis with the condition of $(N, T) \rightarrow \infty$ and so long as $\sqrt{N}/T \rightarrow \infty$, and when the error terms are normally distributed, the Δ test has an asymptotic standard normal distribution.

The small sample properties of the Δ test can be improved when there are normally distributed errors by using the following mean and variance bias adjusted version:

$$\Delta_{adj} = \sqrt{N} \left(\frac{N^{-1}S - E(Z_{it})}{\sqrt{\text{var}(Z_{it})}} \right)$$

where the mean $E(Z_{it}) = k$, and $\text{var}(Z_{it}) = 2k(T-k-1)/(T+1)$.
3.2.3. Panel Causality Test

The panel causality technique proposed by Kónya (2006) entails describing a system which includes three sets of equations. His approach can be formulated as follows:

\[
EG_{1t} = \alpha_{11} + \sum_{l=1}^{p_1} \beta_{11l} EG_{1t-l} + \sum_{l=1}^{p_1} \delta_{11l} EE_{1t-l} + \sum_{l=1}^{p_1} \varphi_{11l} HE_{1t-l} + \varepsilon_{11t}
\]

\[
EG_{Nt} = \alpha_{1N} + \sum_{l=1}^{p_1} \beta_{1Nl} EG_{Nt-l} + \sum_{l=1}^{p_1} \delta_{1Nl} EE_{Nt-l} + \sum_{l=1}^{p_1} \varphi_{1Nl} HE_{Nt-l} + \varepsilon_{1Nt} \quad [9]
\]

\[
EE_{1t} = \alpha_{21} + \sum_{l=1}^{p_2} \beta_{21l} EG_{1t-l} + \sum_{l=1}^{p_2} \delta_{21l} EE_{1t-l} + \sum_{l=1}^{p_2} \varphi_{21l} HE_{1t-l} + \varepsilon_{21t}
\]

\[
EE_{Nt} = \alpha_{2N} + \sum_{l=1}^{p_2} \beta_{2Nl} EG_{Nt-l} + \sum_{l=1}^{p_2} \delta_{2Nl} EE_{Nt-l} + \sum_{l=1}^{p_2} \varphi_{2Nl} HE_{Nt-l} + \varepsilon_{2Nt} \quad [10]
\]

\[
HE_{1t} = \alpha_{31} + \sum_{l=1}^{p_3} \beta_{31l} EG_{1t-l} + \sum_{l=1}^{p_3} \delta_{31l} EE_{1t-l} + \sum_{l=1}^{p_3} \varphi_{31l} HE_{1t-l} + \varepsilon_{31t}
\]

\[
HE_{Nt} = \alpha_{3N} + \sum_{l=1}^{p_3} \beta_{3Nl} EG_{Nt-l} + \sum_{l=1}^{p_3} \delta_{3Nl} EE_{Nt-l} + \sum_{l=1}^{p_3} \varphi_{3Nl} HE_{Nt-l} + \varepsilon_{3Nt} \quad [11]
\]

where EG, EE, and HE denote economic growth, education expenditure, and health expenditure, respectively. N is the number of countries of the panel (i = 1, 2, 3, \ldots, N), t is the time period (t = 1, 2, 3, \ldots, T), and “l” is the lag length. The error terms, \(\varepsilon_{1Nt}\), \(\varepsilon_{2Nt}\) and \(\varepsilon_{3Nt}\), are supposed to be white-noise (i.e. they have zero means, constant variances and are individually serially uncorrelated) and may be correlated with each other for a given country. Moreover, it is assumed that EG, EE and HE are stationary or cointegrated so, depending on the time series properties of the data, they might denote the level, the first difference or some higher difference.

To test for Granger causality in this system, alternative causal relations for a country are likely to be found. For example, there is one-way Granger causality from EE to EG if not all \(\delta_{1,i}\) are zero, but all \(\beta_{2,i}\) are zero; there is one-way Granger causality from EG to EE if all \(\delta_{1,i}\) are zero, but not all \(\beta_{2,i}\) are zero; there is two-way Granger causality between EE and
EG if neither $\delta_{1,i}$ nor $\beta_{2,i}$ is zero; there is no Granger causality between EE and EG if all $\delta_{1,i}$ and $\beta_{2,i}$ are zero. This definition can easily be extended to causal relations between education expenditure and health expenditure and economic growth. To determine the direction of causality, Wald statistics for Granger causality are compared with country-specific critical values that are obtained from the bootstrap sampling procedure.

4. Empirical Findings

In this section, we report the empirical results. Before considering panel data causality analysis, we tested for cross-sectional dependency and slope homogeneity among the countries that we considered in this study. The results are reported in Table 1.

Table: 1

<table>
<thead>
<tr>
<th>Cross-section dependency tests:</th>
<th>Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM (Breusch and Pagan, 1980)</td>
<td>38.478*</td>
<td>0.000</td>
</tr>
<tr>
<td>CD$_{lm}$ (Pesaran, 2004)</td>
<td>11.400*</td>
<td>0.000</td>
</tr>
<tr>
<td>CD (Pesaran, 2004)</td>
<td>4.471*</td>
<td>0.000</td>
</tr>
<tr>
<td>LM$_{adj}$ (Pesaran and Yamagata, 2008)</td>
<td>2.332*</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slope homogeneity tests:</th>
<th>Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ</td>
<td>3.372*</td>
<td>0.000</td>
</tr>
<tr>
<td>$\tilde{\Delta}_{adj}$</td>
<td>2.544*</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Notes: (*) indicates rejection of the null hypothesis at the 1% level of significance. The data covers the whole sample period from 1995 to 2012.

As can be seen from Table 1, the results show that the null hypothesis of no cross-sectional dependence across the countries is strongly rejected at the 1% level of significance, implying that the SUR method is appropriate rather than country by country OLS estimation. This result also shows that a shock, which may occur in one of the selected developing countries, seems to influence other countries. Our results thus indicate that selected eight developing countries have highly integrated economies, and when a shock occurs in one of them, it will then affect the others. On the other hand, the results significantly reject the null hypothesis and indicate not only that education and health influence economic growth in each country, but also that the regression error terms among countries also affect each other.

Table 1 also reveals the results of the two slope homogeneity tests which show that the null hypothesis of the slope homogeneity is rejected thus supporting the country-specific heterogeneity. This result implies that the direction of panel causality analysis between variables in our eight developing countries might be heterogeneous and the direction of causal linkages among the variables may differ across countries. Our results support the alternative hypothesis that heterogeneity exists among countries, and thus that each individual country is affected by their own specific characteristics.
The existence of cross-sectional dependence and slope heterogeneity among our selected eight developing countries means that it is appropriate to use the Bootstrap panel Granger causality method by Kónya (2006). Having established the existence of cross-sectional dependence and the heterogeneity across countries, we determine the optimum lag structure by following Kónya (2006) where the maximal lags are allowed to differ across variables but to be the same across equations.

Due to the fact that the results from the causality test may be sensitive to the lag structure, determining the optimal lag length(s) is crucial as to the robustness of the findings. Kónya (2006) points out that the selection of the optimal lag structure is very important since the causality test results rely on this. To determine the optimal lag structure, we follow Kónya's approach in which maximal lags are allowed to vary across variables but to remain the same across equations, as noted earlier. We estimate the system for each possible trinity of $p_1p_1p_1$, $p_2p_2p_2$, and $p_3p_3p_3$ by assuming from one to four lags, and then choose the combinations which minimize the Akaike Information Criterion (AIC) and Schwartz Information Criterion (SIC).

The results in Table 2 show that only for Argentina and Indonesia, there is a significant and positive causality (at the 10% level of significance) running from education expenditure to economic growth, whereas for the other countries there is no significant causality between these variables. On the other hand, the same table also indicates that there is a significant and positive causality running from economic growth to education expenditure for two countries (i.e. the 10% level of significance for South Africa; the 5% and 10% levels of significance for Turkey).

Table 2: Panel Causality between Education Expenditure and Economic Growth

<table>
<thead>
<tr>
<th>Country</th>
<th>Estimated Coefficient</th>
<th>Wald Test. Stat.</th>
<th>Bootstrap Critical Values</th>
<th>1%</th>
<th>5%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>0.00589</td>
<td>13.7563***</td>
<td>24.46558</td>
<td>14.06453</td>
<td>10.18127</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>-0.01459</td>
<td>0.1092</td>
<td>27.18123</td>
<td>14.82883</td>
<td>9.06729</td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>-0.09944</td>
<td>0.3420</td>
<td>32.01740</td>
<td>17.08315</td>
<td>11.81409</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>-0.03170</td>
<td>0.5932</td>
<td>24.54692</td>
<td>12.89514</td>
<td>8.71482</td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>0.08045</td>
<td>10.2298***</td>
<td>26.42879</td>
<td>13.34733</td>
<td>9.50706</td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>-0.08097</td>
<td>1.5609</td>
<td>23.95145</td>
<td>15.25041</td>
<td>10.26072</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>0.08762</td>
<td>0.1799</td>
<td>32.60644</td>
<td>15.43777</td>
<td>10.09612</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>0.08750</td>
<td>0.2116</td>
<td>26.46759</td>
<td>13.53237</td>
<td>8.59583</td>
<td></td>
</tr>
</tbody>
</table>

H_0 = EE does not cause EG

<table>
<thead>
<tr>
<th>Country</th>
<th>Estimated Coefficient</th>
<th>Wald Test. Stat.</th>
<th>Bootstrap Critical Values</th>
<th>1%</th>
<th>5%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>0.00576</td>
<td>0.1268</td>
<td>152.67360</td>
<td>34.72747</td>
<td>19.77076</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>0.08718</td>
<td>2.5909</td>
<td>195.44569</td>
<td>69.38402</td>
<td>42.73476</td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>-0.04897</td>
<td>2.3526</td>
<td>101.03036</td>
<td>40.29424</td>
<td>22.96750</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>-0.02904</td>
<td>4.9268</td>
<td>160.20581</td>
<td>46.54814</td>
<td>25.86227</td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>-0.08387</td>
<td>0.3533</td>
<td>160.49120</td>
<td>62.58068</td>
<td>32.87172</td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>-0.01706</td>
<td>0.2721</td>
<td>104.97694</td>
<td>43.46849</td>
<td>25.26360</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>0.1704</td>
<td>32.0341***</td>
<td>151.85449</td>
<td>51.10856</td>
<td>31.70103</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>0.21970</td>
<td>97.4417***</td>
<td>127.46211</td>
<td>39.84248</td>
<td>26.35078</td>
<td></td>
</tr>
</tbody>
</table>

H_0 = EG does not cause EE

Notes: EE and EG denote education expenditure and economic growth, respectively. The data covers the whole sample period from 1995 to 2012. (***) indicates statistical significance at the 10% level. Critical values are based on 1000 bootstrap replications.
Table 3 reports the results of panel causality between education expenditure and health expenditure. The results indicate a positive causality running from education expenditure to health expenditure in the case of Argentina, India, Indonesia, and Turkey. Table 3 also shows that only for Indonesia, there is a significant negative causality running from education expenditure to health expenditure whereas for the other countries –Brazil, Chile, Mexico, and South Africa– there is no any causal relationship between education expenditure and health expenditure.

On the other hand, one can also see from the table that there is a significant and positive causality running from health expenditure to education expenditure at the 10% level of significance for both Argentina and Brazil whereas it is significantly negative for Chile.

Table: 3
Panel Causality between Education Expenditure and Health Expenditure

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>0.90044</td>
<td>10.8863***</td>
<td>29.91986</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.44246</td>
<td>3.0129</td>
<td>27.94347</td>
</tr>
<tr>
<td>Chile</td>
<td>0.62272</td>
<td>2.6165</td>
<td>26.23973</td>
</tr>
<tr>
<td>India</td>
<td>0.34872</td>
<td>14.1315***</td>
<td>32.09328</td>
</tr>
<tr>
<td>Indonesia</td>
<td>-0.24096</td>
<td>14.9499***</td>
<td>30.04875</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.53457</td>
<td>1.3695</td>
<td>34.52380</td>
</tr>
<tr>
<td>South Africa</td>
<td>0.07110</td>
<td>0.5261</td>
<td>36.98469</td>
</tr>
<tr>
<td>Turkey</td>
<td>0.18451</td>
<td>13.6432***</td>
<td>30.11148</td>
</tr>
</tbody>
</table>

Notes: EE and HE denote education expenditure and health expenditure, respectively. The data covers the whole sample period from 1995 to 2012. (***) indicates statistical significance at the 10% level. Critical values are based on 1000 bootstrap replications.

Table 4 presents the results of panel causality analysis between health expenditure and economic growth. For India and Indonesia, there is a one-way positive causality running from health expenditure to economic growth at the 10% level of significance. However, there is a positive causality between economic growth and health expenditure at the 10% level of significance for Brazil, India, and Mexico.

Table: 4
Panel Causality between Health Expenditure and Economic Growth

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>(H_0 = HE) does not cause (EG)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>-0.09476</td>
<td>2.8822</td>
<td>28.91754</td>
</tr>
<tr>
<td>Brazil</td>
<td>-0.06213</td>
<td>1.9388</td>
<td>23.28548</td>
</tr>
<tr>
<td>Chile</td>
<td>-0.10950</td>
<td>0.9341</td>
<td>29.35356</td>
</tr>
<tr>
<td>India</td>
<td>0.08676</td>
<td>7.9073***</td>
<td>22.60504</td>
</tr>
<tr>
<td>Indonesia</td>
<td>0.05319</td>
<td>9.9453***</td>
<td>30.47210</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.06343</td>
<td>1.7955</td>
<td>23.31440</td>
</tr>
<tr>
<td>South Africa</td>
<td>0.03631</td>
<td>0.3142</td>
<td>23.69670</td>
</tr>
<tr>
<td>Turkey</td>
<td>-0.04274</td>
<td>0.3267</td>
<td>18.00132</td>
</tr>
<tr>
<td>(H_0 = EG) does not cause (HE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>0.98933</td>
<td>4.8058</td>
<td>132.30685</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.12823</td>
<td>44.9400***</td>
<td>145.85376</td>
</tr>
<tr>
<td>Chile</td>
<td>-0.04789</td>
<td>5.1832</td>
<td>141.38284</td>
</tr>
<tr>
<td>India</td>
<td>0.02974</td>
<td>43.3983***</td>
<td>128.06496</td>
</tr>
<tr>
<td>Indonesia</td>
<td>-0.17861</td>
<td>0.6037</td>
<td>110.97400</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.42981</td>
<td>29.2514***</td>
<td>113.29115</td>
</tr>
<tr>
<td>South Africa</td>
<td>0.00718</td>
<td>3.0331</td>
<td>183.06789</td>
</tr>
<tr>
<td>Turkey</td>
<td>0.43189</td>
<td>2.5216</td>
<td>153.34393</td>
</tr>
</tbody>
</table>

Notes: \(HE \) and \(EG \) denote health expenditure and economic growth, respectively. The data covers the whole sample period from 1995 to 2012. (***) indicates statistical significance at the 10% level. Critical values are based on 1000 bootstrap replications.

Finally, Table 5 reports whether both education expenditure and health expenditure cause economic growth. The results generally indicate that there is no causal relationship between the most countries we incorporated into our empirical analysis. In other words, the null hypothesis of non-causality is accepted for Argentina, Chile, India, South Africa, and Turkey. The results indicate that there is a significant and positive causality running from both education expenditure and health expenditure to economic growth for Brazil and Mexico, whereas there exists a significant and negative causality for Indonesia at the 10% level of significance.

Overall, in this study, weak evidence of a causal relation between education expenditure, health expenditure, and economic growth was found for all the developing countries, except Brazil, Mexico, and Indonesia. However, it is important to note that in some cases, the present findings seem to be consistent with other research in the literature, which found a significant and positive causality between either education expenditure or health expenditure and economic growth. For instance, for Turkey, the findings of this study show a significant and positive causality running from economic growth to education expenditure and from health expenditure to educational growth whereas, as can be seen from the tables, in all other cases, insignificant causality between these variables was reported.
Table 5
Panel Causality between Education Expenditure, Health Expenditure, and Economic Growth

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bootstrap Critical Values</td>
</tr>
<tr>
<td>$H_0 = EE$ and HE do not cause EG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>0.91125</td>
<td>0.5375</td>
<td>23.91760</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.43416</td>
<td>8.1987***</td>
<td>24.08561</td>
</tr>
<tr>
<td>Chile</td>
<td>0.26265</td>
<td>2.4962</td>
<td>28.16428</td>
</tr>
<tr>
<td>India</td>
<td>-1.60705</td>
<td>2.4964</td>
<td>20.38808</td>
</tr>
<tr>
<td>Indonesia</td>
<td>-0.57502</td>
<td>8.8719***</td>
<td>25.05745</td>
</tr>
<tr>
<td>Mexico</td>
<td>3.43513</td>
<td>11.3229***</td>
<td>27.16365</td>
</tr>
<tr>
<td>South Africa</td>
<td>0.08930</td>
<td>1.4766</td>
<td>29.22414</td>
</tr>
<tr>
<td>Turkey</td>
<td>3.43627</td>
<td>0.3712</td>
<td>22.77145</td>
</tr>
</tbody>
</table>

Notes: EE, HE, and EG denote education expenditure, health expenditure, and economic growth, respectively. The data covers the whole sample period from 1995 to 2012. (***) indicates statistical significance at the 10% level. Critical values are based on 1000 bootstrap replications.

Table 6 summarizes the direction of Granger causality analysis of education expenditure, health expenditure, and economic growth for all the countries under consideration.

Table 6
Direction of Granger Causality Relationship between Countries

<table>
<thead>
<tr>
<th>Direction of Granger Causality</th>
<th>Country and Correlation</th>
</tr>
</thead>
</table>
| EE → EG | Argentina and Indonesia: significant and positive
 Brazil, Chile, India, Mexico, South Africa and Turkey: insignificant |
| EG → EE | South Africa and Turkey: significant and positive
 Argentina, Brazil, Chile, India, Indonesia, and Mexico: insignificant |
| EE → HE | Argentina, India, and Turkey: significant and positive
 Indonesia: significant and negative
 Brazil, Chile, Mexico and South Africa: insignificant |
| HE → EE | Argentina and Brazil: significant and positive
 Chile: significant and negative
 India, Indonesia, Mexico, South Africa and Turkey: insignificant |
| HE → EG | India and Indonesia: significant and positive
 Argentina, Brazil, Chile, Mexico, South Africa and Turkey: insignificant |
| EG → HE | Brazil, India, and Mexico: significant and positive
 Argentina, Chile, Indonesia, South Africa and Turkey: insignificant |
| EE, HE → EG | Brazil and Mexico: significant and positive
 Indonesia: significant and negative
 Argentina, Chile, India, South Africa and Turkey: insignificant |

Notes: EE, HE, EG denote education expenditure, health expenditure, and economic growth, respectively.
"→" represents the causal direction.
5. Concluding Remarks

In this paper, we analyzed the Granger causal relation between education expenditure, health expenditure, and economic growth for the selected eight developing countries: Argentina, Brazil, Chile, India, Indonesia, Mexico, South Africa, and Turkey for over the period 1995-2012. To do so, we employed the bootstrap panel causality technique proposed by Kónya (2006), which considers cross-sectional dependence and heterogeneity across the countries.

The empirical findings of this paper indicate highly mixed results. In contrast to earlier empirical findings, however, no strong evidence of causality between education and health expenditures, and economic growth was detected; it is interesting to note that only in Brazil and Mexico in all eight countries, a significant and positive causality running from education expenditure and health expenditure to economic growth was found; however, contrary to expectations, these results were significantly negative for Indonesia. For the rest of the countries considered in this paper, we found insignificant or no causal relationship between education and health expenditures and economic growth.

References

