Effects of strontium ranilate and Hypericum perforatum extract on experimental colitis model in rats

Stronsiyum ranilat ve Hypericum Perforatum ekstraktının ratlarda deneyel kolit modeli üzerine etkileri

Atilla Kurt¹ Cumhuriyet University, Faculty of Medicine, Department of General Surgery, Sivas
Sinan Soylu¹ Cumhuriyet University, Faculty of Medicine, Department of General Surgery, Sivas
Zeynep Deniz Şahin İnal² Cumhuriyet University, Faculty of Medicine, Department of Histology and Embriology, Sivas
Ömer Topçu¹ Cumhuriyet University, Faculty of Medicine, Department of General Surgery, Sivas
Mustafa Atabey¹ Cumhuriyet University, Faculty of Medicine, Department of General Surgery, Sivas

¹ Cumhuriyet University, Faculty of Medicine, Department of General Surgery, Sivas
² Cumhuriyet University, Faculty of Medicine, Department of Histology and Embriology, Sivas
Corresponding author: Atilla Kurt, Cumhuriyet University, Faculty of Medicine, Department of General Surgery, Sivas
E-mail: atillakurt@yahoo.com
Received/Accepted: February 05, 2018 / June 26, 2018
Conflict of interest: There is not a conflict of interest.

SUMMARY
Objective: In this study, we aimed to compare the healing effect of strontium ranilate (SR) and hypericum perforatum (HPE) with the healing effect of prednisolone used in the treatment of experimental colitis in rats.

Method: 30 wistar albino rats were used in the study. Rats were randomly assigned to 5 consecutive groups consisting of 5 rats. Group 1, healthy rats, group 2 colitis but untreated rats. The rats in groups 3, 4, and 5 had colitis and received 160 mg / kg SR, 1mg/kg prednisolone and HP extracts containing 0.3% hiperisine (250 µg / 300 mg) by oral gavage, respectively for seven days. At the end of the seventh day, the colons of the rats were removed and histopathological examination was performed.

Results: The histopathological results of the HPE group were statistically worst including the control group. It was observed that the best results in the treatment groups were SR group followed by prednisolone group, respectively.(P<0.05)

Conclusions: This study concluded that SR was at least as effective as prednisolone in colitis treatment, but HPE exacerbate colitis-induced inflammation when received by orally.

Keywords: Strontium, Hypericum perforatum, colitis

ÖZET
Amaç: Bu çalışmada stronsiyum ranilatin (SR), Hypericum perforatum (HP) ekstresinin deneyel kolit oluşturan ratlarda iyileştirici etkisini tedavide kullanılan prednizolonun iyileştirici etkisine karşılaştırmak istedik.
Yöntem: Çalışmada 30 adet Wistar albino rat kullanıldı. Ratlardan 6’şarlı 5 gruba rastgele ayrıldı. Grup 1 sağlıklı kolit oluşturmamış ratlar, Grup 2 kolit oluşturmamış fakat tedavi verilmemiş ratlar, Grup 3 kolit oluşturułup 160mg/kg SR verilen ratlar, Grup 4 kolit oluşturułup prednizolon (prednol-L Mustafa Nevzat®) (1mg/kg) verilenler, grup 5 kolit oluşturułup 0.3% hiperisine içeren HP ekstresi (250µg/300mg) verilen ratlar olarak gruplar oluşturuldu. Bütün tedavi gruplarına yedi gün boyunca oral gavaj yöntemi ile tedavileri uygulandı. Yedinci gün sonunda ratların kolonları çıkarılarak histopatolojik incelemeye alındı.
INTRODUCTION

Inflammatory Bowel Disease (IBD) is a term used to describe ulcerative colitis and Crohn’s disease. The etiology of these diseases are not fully known. They are interrelated because of common clinical symptoms and similar histopathologic appearance. One of the organs commonly affected by two diseases is the colon. The pathogenesis of these diseases is not fully understood. Because of the side effects of the medicines used in the treatment, there is a need to try drugs with fewer side effects.

In genetically predisposed individuals, it is thought that an abnormal immun-response may occur to the intestinal flora. Tumor Necrosis Factor (TNF-alpha), which is a proinflammatory cytokine in IBD, is known to play an important role in pathogenesis (1-3). It has been shown in adults and pediatric patients that TNF-alpha suppression decreases clinical symptoms in the treatment of patients (4,5). In patients with active colitis, NF-κB activity was demonstrated in mucosal biopsies of patients with active colitis (6). Currently, steroids used in therapy improve clinical symptoms by reducing NF-κB activity (6).

SR is a compound that has been shown to have a positive effect on inflammation. In studies performed, SR has been shown to be effective in allergic rhinitis and ulcerative colitis (7), and it is also used in the treatment of osteoporosis and pain associated with bone metastasis (8,9). Recently it has been shown that strontium inhibits inflammatory mediators by blocking TNF-alpha (10-11).

HP is used in the cold, biliary disorders and bladder irritation, neuralgia, migraine pain, sedation, sciatica and various ulcers, dyspepsia treatment, anti-spasmodically and externally, wound healing and as an anti-septic (12-13). It’s anti-inflammatory effect is known (14). In this study, we wanted to compare the curing effect of SR, HP extract and prednisolone on experimental colitis-induced rats.

MATERIAL AND METHODS

Ethics

Ethical approval was obtained by the Animal Ethics Committee of Cumhuriyet University on 12.4.2017 with 65202830-050.04.04-51 number.

Rats

30 wistar albino rats were included in the study. Standard laboratory conditions. (12 hours day / night, 25 + - 3 C, 45-64% humidity) and free access to the standard rat diet and water. Experiments were conducted between 08:00 and 12:00 in the daytime to protect against circadian effects.

Formation of colitis

Experimental colitis was formed by the method described by Mousavizadeh et al. (15). Under anesthesia, 4% acetic acid solution in 2 ml of ethanol was transrectally applied with a pediatric soft cathether (2,7 mm). After acetic acid administration, rats were holed horizontally for 2 minutes to prevent acetic acid leakage. The rats were randomly divided into 5 groups consisting of 6 rats. Group 1, healthy rats, group 2 colitis but untreated rats. The rats in groups 3, 4, and 5 had colitis and received 160 mg / kg SR, 1mg/kg prednisolone (prednol-L Mustafa Nevzat®) and HP extracts containing 0.3% hiperisine (250 ug / 300 mg) by oral gavage, respectively for seven days.

Histopathologic Evaluation

Seven days after colitis formation, the rats were sacrificed by cervical subluxation. The colon segments were removed. The colons were opened longitudinally and washed with saline. 6 mm serial sections were taken and fixed in 10% neutral formalin for 24-48 hours. buried in paraffin blocks. 5 μm sections were prepared and stained with hemotoxylin-eosin. All sections (four sections for each tissue) were examined. sections with artefacts due to dyeing were not evaluated. After the staining was completed, all preparations were viewed on a light microscope (Olympus BX-51 Tokyo, Japan) for the presence of ischemic damage on the colons. Histopathological evaluation was performed by a single pathologist who was blinded to the groups.
Histopathological results were evaluated by the scoring system determined by Chiu (16), (Table 1).

Table 1. Histopathological improvement scores in the study groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>Min</th>
<th>Max</th>
<th>Median</th>
<th>Standard deviation</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td>0</td>
<td>1</td>
<td>0,17</td>
<td>0,41</td>
<td><0,001</td>
</tr>
<tr>
<td>Control</td>
<td>4</td>
<td>5</td>
<td>4,17</td>
<td>0,41</td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td>4</td>
<td>5</td>
<td>4,83</td>
<td>0,41</td>
<td></td>
</tr>
<tr>
<td>Prednizolon</td>
<td>2</td>
<td>3</td>
<td>2,33</td>
<td>0,52</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>1</td>
<td>2</td>
<td>1,33</td>
<td>0,52</td>
<td></td>
</tr>
</tbody>
</table>

Statistical Analysis

The data were analyzed with the SPSS 15.0 package software. Evaluation according to groups; Kruskal-Wallis H test was used in multiple groups (calculation of the difference of more than one group). Mann-Whitney U test was used to investigate which groups were different when multiple comparisons were found.

RESULTS

When all groups with colitis were examined, the results were statistically worst in the group using HPE, including the control group. It was observed that the best results in the treatment groups were SR group followed by the prednisolone group respectively. (p <0.05) Table 1 shows the histopathological tissue scorings. Graphs 1 demonstrates the histopathological changes in experimental animals.

Graph 1. Histopathological Score Averages According to Study Groups
A: Control group: The tunica mucosa is a lamina propria located under the epithelium and epithelium that form the basal lamina propria, as it should be. Tunica submucosa and muscularis layers were also observed in normal form.
B: Hypericum Perforatum: Tunica mucosa, submucosa and muscularis layers are completely deteriorated in structural integrity.
C: Prednisolon: Regularly arranged layers are observed, it is observed that the epithelium is spilled locally, though not as much as in the HP group. It can be stated that the lamina propria continues in its normal course. Although the tunica submucosa is regularly steady, dilate blood vessels are observed in places. Tunica muscularis is in normal course.
D: Strontium: All layers show regular navigation. It has been determined that although the epithelium is sparse in the tunica mucosa at minimal level, it is the source of the preparation.
Histopathologic appearance of the Tissues in 40x

A: Control Group: The epithelium forming the tunica mucosa layer and the lamina propria located under the epithelium show normal alignment as required.

B: HP: The epithelium in the tunica mucosa is completely injured, in which dilate blood vessels and intense inflammatory cells are present.

C: Prednisolon: Normal image of epithelium and mucosa at close enlargement

D: Strontium: Tunica mucosa layer showing regular and close to normal viewing is being watched with close enlargement.

DISCUSSION

First of all, our study shows that oral SR is more effective than prednisolone in the treatment of colitis. However, HPE has further exacerbated inflammation.

The immune system plays an important role in the development of inflammatory bowel diseases. Th0 cells become Th1 and Th2 with IL-12, IL-18, IL-6, TGF-B or IL-4 activation during inflammation. IFN-γ released from Th1 cells initiates apoptosis in epithelial cells by releasing TNF-α from activated macrophages in the intestines. (17) SR is thought to have an effect on the immunoregulatory inflammatory cells. Recent studies have shown that IL-1α, IL-6 and TNF-α are suppressed in vitro cell cultures (18). It has also been shown that human monocytes perform inflammatory mediator production by suppressing NF-κB activation (19). In a similar study, Firdevs T et al. (7) found that strontium chloride has comparable therapeutic efficiency with prednisolone in rat colitis model.

The anti-inflammatory effect of HPE is known. Medina et al. found that hyperphosphate contained in HP showed anti-inflammatory activity by inhibiting cyclooxygenase-1 and 5-lipoxygenase. Hyperforin was also associated with a proinflammatory response of leukocytes. (14)

We have planned this study in the light of all this information, we investigated the effect of SR and HPE on inflammation in experimental colitis and compared it with a novel therapeutic agent prednisolone. In our histopathological results, we observed that SR was effective in the cure of colitis, as in Firdevs et al. (7). On the other hand, oral application of HPE has been shown to exacerbate inflammation in the colon segments. If it was applied topically or rectally, as it was used in burn treatment (20), it could be a healing effect, but in this study, we were not able to perform rectal application.

Finally, we concluded that SR was effective, but HPE should not be used orally in the treatment of...
colitis. However, further studies in different phases are needed to confirm our results.

REFERENCES

