COEFFICIENT ESTIMATES FOR BI-CONCAVE FUNCTIONS

F. MÜGE SAKAR AND H. ÖZLEM GÜNELY

Abstract. In this study, a new class $C^{p,q}_{\alpha}(\alpha)$ of analytic and bi-concave functions were presented in the open unit disc. The coefficients estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ were found for functions belonging to this class.

1. Introduction, Preliminaries and Definition

The knowledge on bi-concave univalent functions is based on univalent, concave and bi-univalent functions respectively. Therefore, a brief summary of these functions and related references are given in this section.

Let \mathbb{C} as the complex numbers and \mathbb{R} as the set of real numbers. Then open unit disk can be denoted by \mathbb{D} and extended complex plain are denoted by $\mathbb{C} = \mathbb{C} \cup \{\infty\}$. Let \mathcal{A} indicate the class of analytic functions in the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ given in the following form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n. \quad (1.1)$$

All the normalized analytic function classes \mathcal{A} which are univalent in \mathbb{D} are also represented by S. An univalent function $f : \mathbb{D} \to \mathbb{C}$ is called to be concave when $f(\mathbb{D})$ is concave, i.e. $\mathbb{C} \setminus f(\mathbb{D})$ is convex.

Concave univalent functions have already been studied in detailed by several authors (see [1,2,3,4,7]).

A function $f : \mathbb{D} \to \mathbb{C}$ is called to be a member of concave univalent functions with an opening angle $\pi\alpha$, $\alpha \in (1,2]$, at infinity if f holds the conditions given below:

(i) f is analytic in \mathbb{D} which has normalization condition $f(0) = 0 = f'(0) - 1$. Additionally, f fulfills $f(1) = \infty$.

Keywords and phrases. Analytic, bi-concave functions, analytic function, univalent function, bi-univalent function, concave function.
(ii) \(f \) maps \(\mathbb{D} \) conformally onto a set whose complement in accordance with \(\mathbb{C} \) is convex.

(iii) The opening angle of \(f(\mathbb{D}) \) at infinity is equal to or less than \(\pi \alpha \), \(\alpha \in (1, 2] \).

Let’s indicate the class of concave univalent functions of order \(\beta \) by \(C_\beta(\alpha) \).

The analytic characterization for functions in \(C_\beta(\alpha) \) are as follows:

For \(\alpha \in (1, 2] \) and \(\beta \in [0, 1) \), \(f \in C_\beta(\alpha) \) if and only if

\[
\Re P_f(z) > \beta, \quad \forall z \in \mathbb{D},
\]

for

\[
P_f(z) = \frac{2}{\alpha - 1} \left[\frac{\alpha + 1 + z}{2 \left(1 - z \right)} - 1 - \frac{zf''(z)}{f'(z)} \right] \quad \text{and} \quad f(0) = 0 = f'(0) - 1.
\]

Especially, for \(\beta = 0 \), we can obtain the class of concave univalent functions \(C_0(\alpha) \) which was studied in [3].

The closed set \(\mathbb{C} \setminus f(\mathbb{D}) \) is convex and unbounded for \(f \in C_0(\alpha) \), \(\alpha \in (1, 2] \).

\forall f \in C_\beta(\alpha) \) has the Taylor expansion given by the following form

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad |z| < 1.
\]

For all \(f \in \mathcal{S} \), the Koebe 1/4 theorem [8] confirms that the image of \(\mathbb{D} \) under all univalent function \(f \in \mathcal{S} \) covers a disk of radius 1/4. Hence, each \(f \in \mathcal{A} \) has \(f^{-1} \), which is described by

\[
f^{-1}(f(z)) = z \quad (z \in \mathbb{D})
\]

and

\[
f(f^{-1}(w)) = w \quad \left(|w| < r_0(f); r_0(f) \geq \frac{1}{4} \right).
\]

If \(f(z) \) is univalent in \(\mathbb{D} \) and \(g(w) = f^{-1}(w) \) is univalent in \(\{w : |w| < 1\} \), then the function \(f \) belongs to analytic function is known to be bi-univalent in \(\mathbb{D} \). If \(f(z) \) given by (1.1) is bi-univalent, then \(g = f^{-1} \) can be arranged in the form of Taylor expansion given

\[
g(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 - \ldots.
\]

So, \(f \in \mathcal{A} \) is called to be bi-univalent in \(\mathbb{D} \) if each of \(f \) and \(f^{-1} \) are univalent in \(\mathbb{D} \). Also, a function \(f \) is bi-concave if both \(f \) and \(f^{-1} \) are concave.

Some properties of bi-convex, bi-univalent and bi-starlike function classes have already been investigated by Brannan and Taha [6]. Furthermore, an estimation of \(|a_2| \) and \(|a_3| \) was found by Bulut [5] for bi-starlike functions. Our results found for \(|a_2| \) and \(|a_3| \) are related to a different class, so called bi-concave functions.

Let’s denote \(\Sigma \) as the class of all bi-univalent functions in the unit disk \(\mathbb{D} \). Lewin [10] investigated \(\Sigma \) and showed that \(|a_2| < 1.51 \) for the function \(f(z) \in \Sigma \). Also, several researchers obtained the coefficients boundary for \(|a_2| \) and \(|a_3| \) of bi-univalent
functions for the some subclasses of the class Σ in references [9,11,12]. In addition, certain subclasses of bi-univalent functions, and also univalent functions consisting of strongly starlike, starlike and convex functions were studied by Brannan and Taha [6]. They investigated bi-convex and bi-starlike functions and also investigated some properties of these classes.

Now, we define the definition of bi-concave functions as follows:

Definition 1.1. The function $f(z)$ in (1.1) is known to be $\sum_{C_{\beta}(\alpha)}$, $(1 < \alpha \leq 2)$ if the conditions given below are fulfilled: $f \in \Sigma$,

$$\Re \left\{ \frac{2}{\alpha - 1} \left[\frac{\alpha + 1}{2} \frac{1 + z}{1 - z} - 1 - \frac{zf''(z)}{f'(z)} \right] \right\} > \beta , \ z \in \mathbb{D} \text{ and } 0 \leq \beta < 1 \quad (1.4)$$

and

$$\Re \left\{ \frac{2}{\alpha - 1} \left[\frac{\alpha + 1 - w}{2} \frac{1 + w}{1 + w} - 1 - \frac{wg''(w)}{g'(w)} \right] \right\} > \beta , \ w \in \mathbb{D} \text{ and } 0 \leq \beta < 1. \quad (1.5)$$

where the g is given in (1.3). In the other words, $\sum_{C_{\beta}(\alpha)}$ is the class of bi-concave functions order β.

We introduce the following subclass of the analytic functions class A, analogously to the definition given by Xu et al. [13].

Definition 1.2. Let's define the functions $p, q : \mathbb{D} \to \mathbb{C}$ satisfying the following condition

$$\min \{ \Re(p(z)), \Re(q(z)) \} > 0 \quad (z \in \mathbb{D}) \text{ and } p(0) = q(0) = 1.$$

In addition let f, in (1.1), be in A. Then, $f \in \sum_{C_{\beta}(\alpha)}$, $(1 < \alpha \leq 2)$ if the conditions given in (1.4) and (1.5) are fulfilled: $f \in \Sigma$

$$\frac{2}{\alpha - 1} \left[\frac{\alpha + 1}{2} \frac{1 + z}{1 - z} - 1 - \frac{zf''(z)}{f'(z)} \right] \in p(\mathbb{D}), \ (z \in \mathbb{D}) \quad (1.6)$$

and

$$\frac{2}{\alpha - 1} \left[\frac{\alpha + 1 - w}{2} \frac{1 + w}{1 + w} - 1 - \frac{wg''(w)}{g'(w)} \right] \in q(\mathbb{D}), \ (w \in \mathbb{D}) \quad (1.7)$$

where the g is given in (1.3).

Remark

If we let

$$p(z) = \frac{1 + (1 - 2\beta)z}{1 - z} \quad \text{and} \quad q(z) = \frac{1 - (1 - 2\beta)z}{1 + z} \quad (0 \leq \beta < 1, z \in \mathbb{D})$$

in the class $\sum_{C_{\beta}(\alpha)}$ then we have $\sum_{C_{\beta}(\alpha)}$.

The aim of this paper is to estimate the initial coefficients for the bi-concave functions in \mathbb{D}.
2. Initial Coefficient Boundary for $|a_2|$ and $|a_3|$

The estimation of initial coefficient for bi-concave functions class $C^{p,q}_2(\alpha)$ are presented in this section.

Theorem 2.1. If the function $f(z)$ given by (1.1) is in $C^{p,q}_2(\alpha)$ then

$$|a_2| \leq \min \left\{ \sqrt{\frac{(\alpha + 1)^2}{4} + \frac{\alpha - 1}{8} [p'(0)] + [q'(0)] + \frac{(\alpha - 1)^2}{32} [p'^2 + q'^2]} + \sqrt{\frac{(\alpha + 1)}{2} + \frac{(\alpha - 1)}{16} [p''(0)] + [q''(0)]} \right\}$$

(2.1)

and

$$|a_3| \leq \min \left\{ \frac{(\alpha + 1)^2}{4} + \frac{(\alpha - 1)}{24} [2p''(0)] + [q''(0)] + \frac{(\alpha - 1)}{48} [p''(0)] + q''(0) + \frac{1}{8} (\alpha^2 - 1) [p'(0)] + [q'(0)] + \frac{1}{32} (\alpha - 1)^2 [p'^2 + q'^2] \right\}.$$

(2.2)

Proof. Firstly, we can write the argument inequalities in their equivalent forms as follows:

$$\frac{2}{\alpha - 1} \left[\frac{(\alpha + 1)}{2} \frac{1 + z}{1 - z} 1 - \frac{zf''(z)}{f'(z)} \right] = p(z) \quad (z \in \mathbb{D}),$$

(2.3)

and

$$\frac{2}{\alpha - 1} \left[\frac{(\alpha + 1)}{2} \frac{1 - w}{1 + w} 1 - \frac{wg''(w)}{g'(w)} \right] = q(w) \quad (w \in \mathbb{D}).$$

(2.4)

In addition to, the $p(z)$ and $q(w)$ can be expended to Taylor-Maclaurin series as given below respectively

$$p(z) = 1 + p_1z + p_2z^2 + ...$$

and

$$q(w) = 1 + q_1w + q_2w^2 +$$

Now upon equating the coefficients of $\frac{2}{\alpha - 1} \left[\frac{(\alpha + 1)}{2} \frac{1 + z}{1 - z} 1 - \frac{zf''(z)}{f'(z)} \right]$ with those of $p(z)$ and the coefficients of $\frac{2}{\alpha - 1} \left[\frac{(\alpha + 1)}{2} \frac{1 - w}{1 + w} 1 - \frac{wg''(w)}{g'(w)} \right]$ with those of $q(w)$. We can write $p(z)$ and $q(w)$ as follows.

$$p(z) = \frac{2}{\alpha - 1} \left[\frac{(\alpha + 1)}{2} \frac{1 + z}{1 - z} 1 - \frac{zf''(z)}{f'(z)} \right] = 1 + p_1z + p_2z^2 + p_3z^3 + ...$$ (2.5)
and
\[q(w) = \frac{2}{(\alpha - 1)} \left[\frac{(\alpha + 1)}{2} \frac{1 - w}{1 + w} - 1 - \frac{wg''(w)}{g'(w)} \right] = 1 + q_1 w + q_2 w^2 + q_3 w^3 + \ldots . \] (2.6)

Since
\[\frac{zf''(z)}{f'(z)} = \frac{2a_2 z + 6a_3 z^2 + 12a_4 z^3 + \ldots}{1 + 2a_2 z + 3a_3 z^2 + 4a_4 z^3 + \ldots} = 2a_2 z + (6a_3 - 4a_2^2) z^2 + \ldots \]
and
\[1 + \sum_{n=1}^{\infty} z^n = 1 + 2z + 2z^2 + 2z^3 + \ldots \]
we obtain that
\[\frac{2}{\alpha - 1} \left[\frac{(\alpha + 1)}{2} \frac{1 + z}{1 - z} - 1 - \frac{zf''(z)}{f'(z)} \right] \]
\[= \frac{2}{(\alpha - 1)} \left[\frac{(\alpha + 1)}{2} - 1 + (\alpha + 1) z + (\alpha + 1) z^2 + \ldots - 2a_2 z - (6a_3 - 4a_2^2) z^2 + \ldots \right] \]
\[= \frac{2}{(\alpha - 1)} \left[\frac{(\alpha - 1)}{2} + ((\alpha + 1) - 2a_2) z + ((\alpha + 1) - (6a_3 - 4a_2^2)) z^2 + \ldots \right] \]
\[= 1 + \frac{2(\alpha + 1) - 2a_2}{(\alpha - 1)} z + \frac{2[(\alpha + 1) - 6a_3 + 4a_2^2]}{(\alpha - 1)} z^2 + \ldots . \]

Then
\[p_1 = \frac{2[(\alpha + 1) - 2a_2]}{(\alpha - 1)} \] (2.7)
\[p_2 = \frac{2[(\alpha + 1) - 6a_3 + 4a_2^2]}{(\alpha - 1)} . \] (2.8)

From (1.3) and (2.4)
\[\frac{wg''(w)}{g'(w)} = \frac{-2a_2 w + 6(2a_2^2 - a_3) w^2 - 12(5a_2^3 - 5a_2 a_3 + a_4) w^3 + \ldots}{1 - 2a_2 w + 3(2a_2^2 - a_3) w^2 - 4(5a_2^3 - 5a_2 a_3 + a_4) w^3 + \ldots} \]
\[= -2a_2 w + (8a_2^2 - 6a_3) w^2 \ldots . \]

Then from \(q(w) \) given by (2.6), we have
\[\frac{2}{\alpha - 1} \left[\frac{(\alpha + 1)}{2} \frac{1 - w}{1 + w} - 1 - \frac{wg''(w)}{g'(w)} \right] \]
\[= \frac{2}{(\alpha - 1)} \left[\frac{(\alpha + 1)}{2} - (\alpha + 1) w + (\alpha + 1) w^2 - \ldots - 1 + 2a_2 w - (8a_2^2 - 6a_3) w^2 + \ldots \right] \]
\[= 1 - \frac{2[(\alpha + 1) - 2a_2]}{(\alpha - 1)} w + \frac{2[(\alpha + 1) - 8a_2^2 + 6a_3]}{(\alpha - 1)} w^2 + \ldots . \]
So we can obtain q_1 and q_2 as follows

\[
q_1 = -\frac{2[(\alpha + 1) - 2a_2]}{(\alpha - 1)} \quad (2.9)
\]

\[
q_2 = \frac{2[(\alpha + 1) - 8a_2^2 + 6a_3]}{(\alpha - 1)} . \quad (2.10)
\]

From (2.7) and (2.9) we obtain

\[
p_1 = q_1 \quad (2.11)
\]

\[
a_2^2 = \frac{(\alpha + 1)^2}{4} - \frac{(\alpha^2 - 1)}{8} [p_1 - q_1] + \frac{(\alpha - 1)^2}{32} [p_1^2 + q_1^2]. \quad (2.12)
\]

Also, from (2.8) and (2.10) we obtain that

\[
a_2^2 = \frac{(1 - \alpha)}{8} [p_2 + q_2] + \frac{4(\alpha + 1)}{8}. \quad (2.13)
\]

Therefore, we find from the (2.12) and (2.13)

\[
|a_2|^2 \leq \frac{(\alpha + 1)^2}{4} + \frac{(\alpha^2 - 1)}{8} [|p'(0)| + |q'(0)|] + \frac{(\alpha - 1)^2}{32} [p'^2 + q'^2]
\]

and

\[
|a_2|^2 \leq \frac{(\alpha + 1)}{2} + \frac{(\alpha - 1)}{16} [p''(0)| + |q''(0)|] .
\]

So we have the coefficient of $|a_2|$ as maintained in (2.1).

Now, to obtain the bound on the coefficient $|a_3|$ we use (2.8) and (2.10). So we obtain

\[
(\alpha - 1)(p_2 - q_2) = 24a_2^2 - 24a_3.
\]

From (2.13) we find

\[
24a_3 = -(\alpha - 1)(p_2 - q_2) + 24 \left(\frac{(\alpha + 1)}{2} + \frac{(1 - \alpha)}{8} (p_2 + q_2) \right)
\]

\[
\Rightarrow a_3 = \frac{\alpha + 1}{2} - \frac{\alpha - 1}{12} [2p_2 + q_2]. \quad (2.14)
\]

We thus find that

\[
|a_3| \leq \frac{\alpha + 1}{2} + \frac{(\alpha - 1)}{24} (2|p''(0)| + |q''(0)|).
\]

Also from (2.12) we obtain

\[
24a_3 = -(\alpha - 1)(p_2 - q_2) + 24 \left[\frac{(\alpha + 1)^2}{4} - \frac{(\alpha^2 - 1)}{8} (p_1 - q_1) + \frac{(\alpha - 1)^2}{32} (p_1^2 + q_1^2) \right]
\]

\[
\Rightarrow a_3 = \frac{(\alpha + 1)^2}{4} - \frac{(\alpha - 1)}{24} (p_2 - q_2) - \frac{1}{8} (\alpha^2 - 1)(p_1 - q_1) + \frac{1}{32} (\alpha - 1)^2 (p_1^2 + q_1^2). \quad (2.15)
\]
We thus find that
\[|a_3| \leq \frac{(\alpha + 1)^2}{4} + \frac{(\alpha - 1)}{48} (|p''(0)|+|q''(0)|) + \frac{1}{8}(\alpha^2 - 1)(|p'(0)|+|q'(0)|) + \frac{1}{32}(\alpha - 1)^2 (|p''|+|q''|). \]
So, the proof of Theorem 2.1 is completed. \(\square\)

3. Conclusion

If \(p\) and \(q\) are chosen in Theorem 2.1 as follows, the following corollary can easily be obtained.

\[p(z) = \frac{1 + (1 - 2\beta)z}{1 - z} \quad \text{and} \quad q(z) = \frac{1 - (1 - 2\beta)z}{1 + z} \quad (0 \leq \beta < 1, z \in \mathbb{D}) \]

Corollary 3.1. Let \(f(z)\), in the expansion (1.1) be in the bi-concave function class \(\sum_{\gamma \in C(\alpha)} \gamma \) \((0 \leq \beta < 1, 1 < \alpha \leq 2)\). Then

\[|a_2| \leq \sqrt{\left(\frac{\alpha + 1}{2}\right) + \left(\frac{\alpha - 1}{2}\right)(1 - \beta)} \]

and

\[|a_3| \leq \frac{\alpha + 1}{2} + \frac{\alpha - 1}{2}(1 - \beta). \]

References

Current address: F. Müge SAKAR Batman University Faculty of Management and Economics Department of Business Administration 72060 Batman TURKEY
E-mail address: mugesakar@hotmail.com
ORCID Address: http://orcid.org/0000-0002-3884-3957

Current address: H. Özlem GÜNEY Dicle University Faculty of Science Department of Mathematics 21280 Diyarbakır TURKEY
E-mail address: ozlemg@dicle.edu.tr
ORCID Address: http://orcid.org/0000-0002-3010-7795