Central Automorphism Groups for Semidirect Product of p-Groups

Ozge OZTEKIN
Gaziantep University

Zeynep GURBUZ
Gaziantep University

Abstract: Let $\mathbb{Z}_p \rtimes \phi \mathbb{Z}_p$ be the semi-direct product of \mathbb{Z}_p and \mathbb{Z}_p with respect to ϕ (ϕ is homomorphism from \mathbb{Z}_p to automorphisms group of \mathbb{Z}_p). In this work, the group $\text{Aut}_{c}(\mathbb{Z}_3 \rtimes \phi \mathbb{Z}_3)$ of all central automorphisms of $\mathbb{Z}_3 \rtimes \phi \mathbb{Z}_3$ is studied and we determine the form of central automorphisms of $\mathbb{Z}_3 \rtimes \phi \mathbb{Z}_3$.

Keywords: P-group, Semi-direct product, Central automorphism

Introduction

Let G be a group. By $C(G)$, $\text{Aut}(G)$ and $\text{Inn}(G)$ we denote the center, the group of all automorphisms and the group of all inner automorphisms of G, respectively. An automorphism θ of G is called central automorphisms if θ commutes with every inner automorphism, or equivalently, if $g^{-1} \theta(g)$ lies in the center of G for all g in G. The central automorphisms form a normal subgroup of $\text{Aut}(G)$ and we denote this group with $\text{Aut}_{c}(G)$. Also $\text{Aut}_{c}(G)$ is the subgroup of $\text{Inn}(G)$.

A p-group is a group in which every element has finite order, and the order of every element is a power of prime number p. The term p-group is typically used for a finite p-group, which is equivalent to a group of prime power order.

In literature, there are important studies about central automorphisms of p-groups [1], [2]. In [1] Adney and Yen has shown that if G is a finite purely non-abelian group then $|\text{Aut}_{c}(G)| = |\text{Hom}(G/G') \times \mathbb{Z}(G)|$. The automorphisms of direct and semidirect product of p-groups was given by Stahl in [3].

In this work our goal is to determine the central automorphisms of $\mathbb{Z}_p \rtimes \phi \mathbb{Z}_p$ where $p=3$ and ϕ is homomorphism from \mathbb{Z}_p to automorphisms group of \mathbb{Z}_p.

Preliminaries

Definition. Let H and K be non-trivial finite groups and $\phi : K \rightarrow \text{Aut}(H)$ be a homomorphism. We define the operation \rtimes_{ϕ} as the following: Let $H \rtimes_{\phi} K$ be the set $\{(h,k) : h \in H, k \in K\}$ on which it acts an operation \ast as

$$(h_1,k_1) \ast (h_2,k_2) = (h_1 \phi(k_1)(h_2), (k_1 \cdot k_2))$$

We define $G \trianglelefteq H \rtimes_{\phi} K$ as the semi-direct product of H and K with respect to ϕ.

Definition. An automorphism θ of G is called central automorphism if θ commutes with every inner automorphism, or equivalently, if $g^{-1} \theta(g)$ lies in the $C(G)$. The central automorphisms form a normal subgroup of $\text{Aut}(G)$.
Main Results

Theorem. Let \(\varphi \) be an automorphism of \(\mathbb{Z}_p \rtimes \mathbb{Z}_p \) \((p \text{ is odd number}) \) where \(\varphi : \mathbb{Z}_p \rightarrow \text{Aut}(\mathbb{Z}_p) \) and \(\varphi(a)=1+pa \) then \(\varphi \) is defined by

\[
\varphi(a,b) = (a^i b^j, a^m b)
\]

where \(i \in \mathbb{Z}_p, j, m \in \mathbb{Z}_p \) and \(i \not\equiv 0 \pmod{p} \)

Proof. REF.[3]

Theorem. \(|\text{Aut}(\mathbb{Z}_p \rtimes \mathbb{Z}_p)|=p^3(p-1)\).

Proof. REF.[3]

For determining the central automorphisms of \(\mathbb{Z}_3 \rtimes \mathbb{Z}_3 \), first we find the \(C(\mathbb{Z}_3 \rtimes \mathbb{Z}_3) \).

Lemma. \(C(\mathbb{Z}_3 \rtimes \mathbb{Z}_3)=\{(0,0),(3,0),(6,0)\} \).

Proof. If \((a,b)\in C(\mathbb{Z}_3 \rtimes \mathbb{Z}_3)\) then for every \((c,d)\in (\mathbb{Z}_3 \rtimes \mathbb{Z}_3)\),

\[
(a,b) \cdot (c,d) = (c,d) \cdot (a,b)
\]

from this we get

\[
(a+(1+3b)c,b+d) = (c+(1+3d)a,d+b).
\]

a must be 0, 3 or 6 and b must be 0 for the last equation to be provided for every \((c,d)\in (\mathbb{Z}_3 \rtimes \mathbb{Z}_3)\). Therefore \(C(\mathbb{Z}_3 \rtimes \mathbb{Z}_3)=\{(a,0)\mid a=0,3,6\} \)

Corollary. \(C(\mathbb{Z}_3 \rtimes \mathbb{Z}_3)<(3,0)> \) and the order of \(C(\mathbb{Z}_3 \rtimes \mathbb{Z}_3) \) is 3.

Theorem. Let \(\theta \) be an automorphism of \(\mathbb{Z}_3 \rtimes \mathbb{Z}_3 \). If \(\theta \) is central then it has the form

\[
\theta(a,b) = (a \rightarrow a^{3k+1}, a^{3m} b)
\]

where \(k, m \in \mathbb{Z}_3 \).

Proof. Let \(\theta \) be an automorphism of \(\mathbb{Z}_3 \rtimes \mathbb{Z}_3 \). Then it has the form

\[
\theta(a,b) = (a^i b^j, a^m b)
\]

where \(i \in \mathbb{Z}_3, j, m \in \mathbb{Z}_3 \) and \(i \not\equiv 0 \pmod{3} \)

If \(\theta \in \text{Aut}_c(\mathbb{Z}_3 \rtimes \mathbb{Z}_3) \) then for all \(g=(a,b)\in (\mathbb{Z}_3 \rtimes \mathbb{Z}_3), \theta \) satisfy \(g^{-1} \cdot \theta(g) \in C(\mathbb{Z}_3 \rtimes \mathbb{Z}_3) \)

By using the operation \(\ast \) rule we get

\[
g^{-1} \cdot \theta(g) = (i(a + 3ab) + j(b + 3b^2), a, 0).
\]

For \((i(a + 3ab) + j(b + 3b^2), a, 0) \in C(\mathbb{Z}_3 \rtimes \mathbb{Z}_3) \)

\[
(i(a + 3ab) + j(b + 3b^2), a, 0) = (0, 3, 6)
\]

Therefore the conditions \((i=1, j=0), (i=4, j=0)\) and \((i=7, j=0)\) satisfy this equation for all \(g \). We put this conditions at \((1) \) we get the general form of central automorphisms as:

\[
\theta(a,b) = (a \rightarrow a^{3k+1}, a^{3m} b)
\]

References

Author Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
<th>Contact e-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozge Oztekin</td>
<td>Department of Mathematics, Gaziantep University</td>
<td>ozgedoztr@gmail.com</td>
</tr>
<tr>
<td>Zeynep Gurbuz</td>
<td>Department of Mathematics, Gaziantep University</td>
<td></td>
</tr>
</tbody>
</table>