Perception of Nano Generalized $t^\#$-Closed Sets

Sajan Joseph1 <sajanreka@gmail.com>
Ochanan Nethaji2 <jionetha@yahoo.com>
Ilangovan Rajasekaran3,* <sekarmelakkal@gmail.com>

1Department of Mathematics, Arul Anandar College, Karumathur, Madurai District, Tamil Nadu, India
2Research Scholar, School of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India
3Department of Mathematics, Tirunelveli Dakshina Mara Nadar Sangam College, T. Kallikulam-627 113, Tirunelveli District, Tamil Nadu, India

Abstract — In this paper, we introduce a new class of sets called $nt^\#_g$-closed sets, which is stronger than ng-closed sets and weaker than n-closed sets.

Keywords — $n\pi$-closed set, $n\pi g$-closed set, $n\pi gp$-closed set, $n\pi gs$-closed set, $nt^\#$-set, $nt^\#_g$-closed set

1 Introduction

Thivagar et al. [6] introduced a nano topological space with respect to a subset X of an universe which is defined in terms of lower approximation and upper approximation and boundary region. The classical nano topological space is based on an equivalence relation on a set, but in some situation, equivalence relations are not suitable for coping with granularity, instead the classical nano topology is extend to general binary relation based covering nano topological space.

Bhuvaneswari et al. [4] introduced and investigated nano g-closed sets in nano topological spaces. Recently, Parvathy and Bhuvaneswari the notions of nano gpr-closed sets which are implied both that of nano rg-closed sets. In 2017, Rajasekaran et al. [9, 10] introduced the notion of nano πgp-closed sets and nano πgs-closed sets in nano topological spaces. In this paper, we introduce a new class of sets called nano $t^\#_g$-closed sets, which is stronger than nano g-closed sets and weaker than nano closed sets.

*Corresponding Author.
2 Preliminaries

Definition 2.1. [11] Let U be a non-empty finite set of objects called the universe and R be an equivalence relation on U named as the indiscernibility relation. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair (U, R) is said to be the approximation space. Let \(X \subseteq U \).

1. The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X with respect to R and it is denoted by \(L_R(X) \).
 That is, \(L_R(X) = \bigcup_{x \in U} \{ R(x) : R(x) \subseteq X \} \), where \(R(x) \) denotes the equivalence class determined by x.

2. The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X with respect to R and it is denoted by \(U_R(X) \).
 That is, \(U_R(X) = \bigcup_{x \in U} \{ R(x) : R(x) \cap X \neq \emptyset \} \).

3. The boundary region of X with respect to R is the set of all objects, which can be classified neither as X nor as not - X with respect to R and it is denoted by \(B_R(X) \).
 That is, \(B_R(X) = U_R(X) - L_R(X) \).

Property 2.2. [6] If \((U, R) \) is an approximation space and \(X, Y \subseteq U \); then

1. \(L_R(X) \subseteq X \subseteq U_R(X) \);
2. \(L_R(\phi) = U_R(\phi) = \phi \) and \(L_R(U) = U_R(U) = U \);
3. \(U_R(X \cup Y) = U_R(X) \cup U_R(Y) \);
4. \(U_R(X \cap Y) \subseteq U_R(X) \cap U_R(Y) \);
5. \(L_R(X \cup Y) \supseteq L_R(X) \cup L_R(Y) \);
6. \(L_R(X \cap Y) \subseteq L_R(X) \cap L_R(Y) \);
7. \(L_R(X) \subseteq L_R(Y) \) and \(U_R(X) \subseteq U_R(Y) \) whenever \(X \subseteq Y \);
8. \(U_R(X^c) = \overline{[L_R(X)]^c} \) and \(L_R(X^c) = \overline{[U_R(X)]^c} \);
9. \(U_RU_R(X) = L_RU_R(X) = U_R(X) \);
10. \(L_RL_R(X) = U_RL_R(X) = L_R(X) \).

Definition 2.3. [6] Let U be the universe, R be an equivalence relation on U and \(\tau_R(X) = \{ U, \phi, L_R(X), U_R(X), B_R(X) \} \) where \(X \subseteq U \). Then \(\tau_R(X) \) satisfies the following axioms:

1. \(U \) and \(\phi \in \tau_R(X) \),
2. The union of the elements of any sub collection of \(\tau_R(X) \) is in \(\tau_R(X) \),
3. The intersection of the elements of any finite subcollection of \(\tau_R(X) \) is in \(\tau_R(X) \).
Thus $\tau_R(X)$ is a topology on U called the nano topology with respect to X and $(U, \tau_R(X))$ is called the nano topological space. The elements of $\tau_R(X)$ are called nano-open sets (briefly n-open sets). The complement of a n-open set is called n-closed.

In the rest of the paper, we denote a nano topological space by (U, \mathcal{N}), where $\mathcal{N} = \tau_R(X)$. The nano-interior and nano-closure of a subset A of U are denoted by n-int(A) and n-cl(A), respectively.

Definition 2.4. A subset H of a space (U, \mathcal{N}) is called:

1. nano regular-open (briefly nr-open) set [6] if $H = n$-int$(n$-cl$(H))$.
2. nano pre open (briefly np-open) set [6] if $H \subseteq n$-int$(n$-cl$(H))$.
3. nano semi open (briefly ns-open) set [6] if $H \subseteq n$-cl$(n$-int$(H))$.
4. nano π-open (briefly nπ-open) set [1] if the finite union of nr-open sets.

The complements of the above mentioned sets is called their respective closed sets.

Definition 2.5. [7] A subset H of a space (U, \mathcal{N}) is called a $nt^#$-set if n-int$(H) = n$-cl$(n$-int$(H))$.

Definition 2.6. A subset H of a space (U, \mathcal{N}) is called:

1. nano g-closed (briefly ng-closed) [2] if n-cl$(H) \subseteq G$, whenever $H \subseteq G$ and G is n-open.
2. nano πg-closed (briefly nπg-closed) [8] if n-cl$(H) \subseteq G$, whenever $H \subseteq G$ and G is nπ-open.
3. nano gp-closed set (briefly ngp-closed) [4] if n-pcl$(H) \subseteq G$, whenever $H \subseteq G$ and G is n-open.
4. nano gs-closed (briefly ngs-closed) [3] if n-scl$(H) \subseteq G$, whenever $H \subseteq G$ and G is n-open.
5. nano πgp-closed (briefly nπgp-closed) [9] if n-pcl$(H) \subseteq G$, whenever $H \subseteq G$ and G is nπ-open.
6. nano πgs-closed (briefly nπgs-closed) [10] if n-scl$(H) \subseteq G$, whenever $H \subseteq G$ and G is nπ-open.
7. nano g^*-closed (briefly ng*-closed) [12] if n-cl$(H) \subseteq G$ whenever $H \subseteq G$ and G is ng-open.
8. nano LC-set (briefly nLC-set) [5] if $H = G \cap K$, where G is n-open and K is n-closed.
3 On Nano $t^\#_g$-Closed Sets, Nano $t^\#_sg$-Closed Sets and Nano $t^\#_{pg}$-Closed Sets

Definition 3.1. A subset H of a space (U, \mathcal{N}) is called:

1. nano $t^\#_g$-closed (briefly $nt^\#_g$-closed) if $n-cl(H) \subseteq G$ whenever $H \subseteq G$ and G is $nt^\#$-set.

2. nano $t^\#_sg$-closed (briefly $nt^\#_sg$-closed) if $n-scl(H) \subseteq G$ whenever $H \subseteq G$ and G is $nt^\#$-set.

3. nano $t^\#_{pg}$-closed (briefly $nt^\#_{pg}$-closed) if $n-pcl(H) \subseteq G$ whenever $H \subseteq G$ and G is $nt^\#$-set.

The complements of the above mentioned sets are called their respective n-open sets.

Example 3.2. Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{b, c\}, \{d\}\}$ and $X = \{b, d\}$. Then the nano topology $\mathcal{N} = \{\phi, \{d\}, \{b, c\}, \{b, c, d\}, U\}$.

1. $H = \{a\}$ is $nt^\#$-closed set.

2. $H = \{d\}$ is $nt^\#_sg$-closed set.

3. $H = \{a, c\}$ is $nt^\#_{pg}$-closed set.

Remark 3.3. The family of nLC-set and the family of ng-closed sets are independent.

Example 3.4. In Example 3.2,

1. $H = \{b, c\}$ is nLC-set but not ng-closed set.

2. $H = \{a, b\}$ is ng-closed set but not nLC-set.

Theorem 3.5. For a subset H of a space (U, \mathcal{N}), the following are equivalent:

1. H is nLC-set.

2. $H = G \cap n-cl(H)$ for some G n-open set.

Proof. $(1) \Rightarrow (2)$. Since H is a nLC-set, then $H = G \cap K$, where G is n-open and K is n-closed. So, $H \subseteq G$ and $H \subseteq K$. Hence, $n-cl(H) \subseteq n-cl(K)$. Therefore, $H \subseteq G \cap n-cl(H) \subseteq G \cap n-cl(K) = G \cap K = H$. Thus, $H = G \cap n-cl(H)$.

$(2) \Rightarrow (1)$. It is obvious because $n-cl(H)$ is n-closed.

Theorem 3.6. For a subset H of a space (U, \mathcal{N}), the following are equivalent:

1. H is n-closed.

2. H is nLC-set and ng-closed.
Proof. (1) \Rightarrow (2). This is obvious.

(2) \Rightarrow (1). Since H is nLC-set, then $H = G \cap n-cl(H)$, where G is n-open set in U. So, $H \subseteq G$ and since H is ng-closed, then $n-cl(H) \subseteq G$. Therefore, $n-cl(H) = G \cap n-cl(H) = H$. Hence, H is n-closed.

Theorem 3.7. In a space (U, N),

1. If H is n-closed set, then H is nt^g-closed set.
2. If is nt^g-closed set, then H is ng-closed set.

Proof. (1). Obvious.

(2). Let H be a nt^g-closed set and $H \subseteq G$ where $G \in N$. Since each n-open set is nt^g-set, so G is nt^g-set. Since H is nt^g-closed set, we obtain that $n-cl(H) \subseteq G$, hence H is ng-closed set.

Remark 3.8. The converses of Theorem 3.7 are not true as seen from the following Example.

Example 3.9. In Example 3.2,

1. $H = \{d\}$ is nt^g-closed set but not n-closed.
2. $H = \{a, b\}$ is ng-closed set but not nt^g-closed set.

Theorem 3.10. In a space (U, N),

1. If H is nt^g-closed set, then H is nt^pg-closed set.
2. If H is nt^g-closed set, then H is nt^pg-closed set.

Proof. Obvious.

Remark 3.11. The converses of Theorem 3.10 are not true as seen from the following Example.

Example 3.12.

1. In Example 3.2, $H = \{b\}$ is nt^pg-closed set but not nt^g-closed set.
2. Let $U = \{a, b, c\}$ with $U/R = \{\{a, b\}, \{c\}\}$ and $X = \{c\}$. Then the nano topology $N = \{\emptyset, \{c\}, U\}$, $H = \{a\}$ is nt^pg-closed set but not nt^g-closed set.

Remark 3.13. We obtain the following diagram, where $A \rightarrow B$ represents A implies B but not conversely.

\[
\begin{array}{ccc}
ng^*-\text{closed} & \downarrow \\
nLC-\text{set} & \leftarrow & n\text{-closed} & \leftarrow & n\pi\text{-closed} & \downarrow \\
nt^g_{sg}\text{-closed} & \downarrow \\
n\pi_{gs}\text{-closed} & \leftarrow & ng\text{-closed} & \rightarrow & n\pi_{pg}\text{-closed} & \downarrow \\
n\pi_{gs}\text{-closed} & \leftarrow & n\pi_{g}\text{-closed} & \rightarrow & n\pi_{gp}\text{-closed}
\end{array}
\]
None of the above implications are reversible

Example 3.14. In Example 3.2,
1. $H = \{b\}$ is nt$_g^\#$-closed but not ntπ-closed.
2. $H = \{c\}$ is ngs-closed but not nt$_g^\#$-closed.

Theorem 3.15. In a space (U, \mathcal{N}), if H is ng*-closed set, then H is nt$_g^\#$-closed.

Proof. Obvious.

Remark 3.16. The converses of Theorem 3.15 are not true as seen from the following Example.

Example 3.17. In Example 3.2, $H = \{a, b, d\}$ is nt$_g^\#$-closed set but not ng*-closed set.

Remark 3.18. The family of nt$_g^\#$-closed sets and the family of nt$\#$-sets are independent.

Example 3.19. In Example 3.2,
1. $H = \{d\}$ is nt$_g^\#$-closed set but not nt$\#$-set.
2. $H = \{b\}$ is nt$\#$-set but not nt$_g^\#$-closed set.

Theorem 3.20. In a space (U, \mathcal{N}), if H is both nt$\#$-set and nt$_g^\#$-closed set, then H is n-closed.

Proof. Let H be both nt$\#$-set and nt$_g^\#$-closed set. Then n-$cl(H) \subseteq H$, whenever H is a nt$\#$-set and $H \subseteq H$. So we obtain that $H = n$-$cl(H)$ and hence H is n-closed.

Proposition 3.21. In a space (U, \mathcal{N}, I), the union of two nt$_g^\#$-closed sets is nt$_g^\#$-closed.

Proof. Let $H \cup K \subseteq G$, where G is a nt$\#$-set. Since H, K are nt$_g^\#$-closed sets, n-$cl(H) \subseteq G$ and n-$cl(K) \subseteq G$, whenever $H \subseteq G$, $K \subseteq G$ and G is a nt$\#$-set. Therefore, n-$cl(H \cup K) = n$-$cl(H) \cup n$-$cl(K) \subseteq G$. Hence we obtain that $H \cup K$ is a nt$_g^\#$-closed set.

Theorem 3.22. In a space (U, \mathcal{N}, I), the intersection of two nt$_g^\#$-closed sets need not be nt$_g^\#$-closed as illustrated in the following Example.

Example 3.23. In Example 3.2, then $H = \{b, c\}$ and $Q = \{c, d\}$ is nt$_g^\#$-closed sets. Clearly $H \cap Q = \{c\}$ is not nt$_g^\#$-closed set.

Theorem 3.24. In a space (U, \mathcal{N}), if H is nt$_g^\#$-closed set such that $H \subseteq K \subseteq n$-$cl(H)$, then K is also nt$_g^\#$-closed set.

Proof. Let G be a nt$\#$-set such that $K \subseteq G$. Then $H \subseteq G$. Since H is nt$_g^\#$-closed, we have n-$cl(H) \subseteq G$. Now n-$cl(K) \subseteq n$-$cl(n$-$cl(H)) = n$-$cl(H) \subseteq G$. Therefore, K is also nt$_g^\#$-closed set.

Theorem 3.25. In a space (U, \mathcal{N}), let H be nt$_g^\#$-closed. Then n-$cl(H) - H$ does not contain any non-empty complement of nt$\#$-set.
Proof. Let H be $nt^#_g$-closed set. Suppose that P is the complement of $nt^#$-set and $P \subseteq n-cl(H) - H$. Since $P \subseteq n-cl(H) - H \subseteq U - H$, $H \subseteq U - P$ and $U - P$ is $nt^#$-set. Therefore, $n-cl(H) \subseteq U - P$ and $P \subseteq U - n-cl(H)$. However, since $P \subseteq n-cl(H) - H$, $P = \phi$.

References

