Coefficient estimates for a subclass of analytic bi-pseudo-starlike functions of Ma-Minda type

Serap Bulut

1 Kocaeli University, Faculty of Aviation and Space Sciences, Arslanbey Campus, 41285 Kartepe-Kocaeli, TURKEY
* Corresponding author E-mail: serap.bulut@kocaeli.edu.tr

Abstract

In this paper, we introduce a new subclass \(\mathcal{L}_{\lambda}^{\Sigma}(\phi) \) of analytic and bi-univalent functions in the open unit disk \(U \). For functions belonging to this class, we obtain initial coefficient bounds. Our results generalize and improve some earlier results in the literature.

Keywords: Analytic functions; univalent functions; bi-univalent functions; coefficient bounds; subordination; pseudo-starlike functions.

2010 Mathematics Subject Classification: 30C45

1. Introduction

Let \(R = (-\infty, \infty) \) be the set of real numbers, \(\mathbb{C} \) be the set of complex numbers and
\[\mathbb{N} := \{1, 2, 3, \ldots\} = \mathbb{N}_0 \setminus \{0\} \]
be the set of positive integers.

Let \(\mathcal{A} \) denote the class of all functions of the form
\[f(z) = z + \sum_{k=2}^{\infty} a_k z^k \]
which are analytic in the open unit disk
\[U = \{z : z \in \mathbb{C} \text{ and } |z| < 1\} \).

We also denote by \(\mathcal{S} \) the class of all functions in the normalized analytic function class \(\mathcal{A} \) which are univalent in \(U \).

For two functions \(f \) and \(g \), analytic in \(U \), we say that the function \(f \) is subordinate to \(g \) in \(U \), and write
\[f(z) \prec g(z) \quad (z \in U), \]
if there exists a Schwarz function \(\omega \), which is analytic in \(U \) with
\[\omega(0) = 0 \quad \text{and} \quad |\omega(z)| < 1 \quad (z \in U) \]
such that
\[f(z) = g(\omega(z)) \quad (z \in U). \]

Indeed, it is known that
\[f(z) \prec g(z) \quad (z \in U) \Rightarrow f(0) = g(0) \quad \text{and} \quad f(U) \subset g(U). \]

Furthermore, if the function \(g \) is univalent in \(U \), then we have the following equivalence
\[f(z) \prec g(z) \quad (z \in U) \iff f(0) = g(0) \quad \text{and} \quad f(U) \subset g(U). \]
We observe that B where all coefficients are real and f.

We suppose also that $\beta \in \mathbb{R}$ in the unit disk U.

In fact, the inverse function f^{-1} is given by

$$f^{-1}(w) = w - a_2 w^2 + \left(2a_1^2 - a_3\right) w^3 - \left(5a_1^3 - 5a_2 a_3 + a_4\right) w^4 + \cdots.$$ \hspace{1cm} (1.2)

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let Σ denote the class of bi-univalent functions in U.

Recently, Babalola [3] defined the class $\mathcal{L}_\lambda(\beta)$ of λ-pseudo-starlike functions of order β as follows:

Suppose $0 \leq \beta < 1$ and $\lambda \geq 1$ is real. A function $f \in A$ given by (1.1) belongs to the class $\mathcal{L}_\lambda(\beta)$ of λ-pseudo-starlike functions of order β in the unit disk U if and only if

$$\Re \left(\frac{z(f'(z))^\lambda}{f(z)} \right) > \beta \quad (z \in U).$$

Babalola [3] proved that all pseudo-starlike functions are Bazilević of type $1 - 1/\lambda$, order $\beta^{1/\lambda}$ and univalent in U.

Motivated by the abovementioned works, we define the following subclass of function class Σ.

Definition 1.1. For $\lambda \geq 1$, a function $f \in \Sigma$ given by (1.1) is said to be in the class $\mathcal{L}_\lambda^1(\varphi)$ if the following conditions are satisfied:

$$\frac{z(f'(z))^\lambda}{f(z)} < \varphi(z) \quad (z \in U)$$

and

$$w q'(w) \frac{\lambda}{g(w)} < \varphi(w) \quad (w \in U),$$

where the function $g = f^{-1}$ is defined by (1.2).
Remark 1.2. In the following special cases of Definition 1.1, we show how the class of analytic bi-univalent functions \(\mathcal{L} \mathcal{B}_{2}^{k}(\varphi) \) for suitable choices of \(\lambda \) and \(\varphi \) lead to certain known classes of analytic bi-univalent functions studied earlier in the literature.

(i) For \(\lambda = 1 \), we get the class \(\mathcal{L} \mathcal{B}_{2}^{1}(\varphi) = \mathcal{L} \mathcal{B}_{2}^{1}(\varphi) \) of Ma-Minda bi-starlike functions introduced and studied by Ali et al. \cite{1}.

(ii) If we let
\[
\varphi(z) := \varphi_{\alpha}(z) = \left(\frac{1 + z}{1 - z} \right)^{\alpha} = 1 + 2\alpha z + 2\alpha^{2}z^{2} + \cdots \quad (0 < \alpha \leq 1, z \in \mathbb{U}),
\]
then the class \(\mathcal{L} \mathcal{B}_{2}^{1}(\varphi) \) reduces to the class denoted by \(\mathcal{L} \mathcal{B}_{2}^{1}(\alpha) \) which is the subclass of the functions \(f \in \Sigma \) satisfying
\[
\left| \arg \left(\frac{zf'(z)}{f(z)} \right) \right| < \frac{\alpha\pi}{2} \quad \text{and} \quad \left| \arg \left(\frac{w(g'(w))^{3}}{g(w)} \right) \right| < \frac{\alpha\pi}{2},
\]
where the function \(g = f^{-1} \) is defined by \(\varphi(z) \).

(iii) If we let
\[
\varphi(z) := \varphi_{\beta}(z) = \frac{1 + (1 - 2\beta)z}{1 - z} = 1 + 2(1 - \beta)z + 2(1 - \beta)z^{2} + \cdots \quad (0 \leq \beta < 1, z \in \mathbb{U}),
\]
then the class \(\mathcal{L} \mathcal{B}_{2}^{1}(\varphi) \) reduces to the class denoted by \(\mathcal{L} \mathcal{B}_{2}^{1}(\lambda, \beta) \) which is the subclass of the functions \(f \in \Sigma \) satisfying
\[
\Re \left(\frac{zf'(z)}{f(z)} \right) > \beta \quad \text{and} \quad \Re \left(\frac{w(g'(w))^{3}}{g(w)} \right) > \beta,
\]
where the function \(g = f^{-1} \) is defined by \(\varphi(z) \).

The classes \(\mathcal{L} \mathcal{B}_{2}^{1}(\alpha) \) and \(\mathcal{L} \mathcal{B}_{2}^{1}(\lambda, \beta) \) are introduced and studied by Joshi et al. \cite{10}. In the special case \(\lambda = 1 \), we get the classes \(\mathcal{L} \mathcal{B}_{2}^{1}(\alpha) = \mathcal{L} \mathcal{B}_{2}^{1}([\alpha]) \) and \(\mathcal{L} \mathcal{B}_{2}^{1}(1, \beta) = \mathcal{L} \mathcal{B}_{2}^{1}([\beta]) \) introduced and studied by Brannan and Taha \cite{2}.

In order to derive our main results, we need the following lemma.

Lemma 1.3. \cite{16} Let \(k, l \in \mathbb{R} \) and \(z_{1}, z_{2} \in \mathbb{C} \). If \(|z_{1}| < R \) and \(|z_{2}| < R \), then
\[
|(k + 1)z_{1} + (k - l)z_{2}| \leq \begin{cases} 2R|k| & , \quad |k| \geq |l| \\ 2R|l| & , \quad |k| \leq |l| \end{cases}
\]

2. Main Results

Theorem 2.1. Let the function \(f(z) \) given by the Taylor-Maclaurin series expansion \((1.1) \) be in the function class \(\mathcal{L} \mathcal{B}_{2}^{1}(\varphi) \) and \(\lambda \geq 1 \). Then
\[
|a_{2}| \leq \sqrt{\frac{B_{1}^{2}}{(2\lambda - 1)^{2}[2(2\lambda - 1)B_{1} + \lambda B_{1}^{2} - (2\lambda - 1)B_{2}]}} \quad \text{(2.1)}
\]
and
\[
|a_{3}| \leq \begin{cases} \sqrt{\frac{B_{1}}{(2\lambda - 1)^{2}}} & , \quad B_{1} \leq \frac{(2\lambda - 1)^{2}}{2\lambda - 1} \\ \sqrt{\frac{B_{1}}{(2\lambda - 1)^{2}}(2(2\lambda - 1)B_{1} + \lambda B_{1}^{2} - (2\lambda - 1)B_{2})} + \sqrt{\frac{B_{1}}{3\lambda - 1}} & , \quad B_{1} \geq \frac{(2\lambda - 1)^{2}}{2\lambda - 1} \end{cases} \quad \text{(2.2)}
\]

Proof. Let \(f \in \mathcal{L} \mathcal{B}_{2}^{1}(\varphi) \) and \(g = f^{-1} \) be defined by \((1.2) \). Then there are analytic functions \(u, v : \mathbb{U} \to \mathbb{U} \), with \(u(0) = v(0) = 0 \), such that
\[
\frac{zf'(z)}{f(z)} = \varphi(u(z)) \quad \text{(2.3)}
\]
and
\[
\frac{w(g'(w))^{3}}{g(w)} = \varphi(v(w)) \quad \text{(2.4)}
\]

It follows from (1.7), (1.8), (2.3) and (2.4) that
\[
(2\lambda - 1)a_{2} = B_{1}p_{1} \quad \text{(2.5)}
\]
\[
(2\lambda - 4\lambda + 1)a_{3}^{2} + (3\lambda - 1)a_{3} = B_{1}p_{2} + B_{2}p_{1}^{2} \quad \text{(2.6)}
\]
\[-(2\lambda - 1)a_{2} = B_{1}q_{1} \quad \text{(2.7)}
\]
\[
(2\lambda^{2} + 2\lambda - 1)a_{3}^{2} - (3\lambda - 1)a_{3} = B_{1}q_{2} + B_{2}q_{1}^{2} \quad \text{(2.8)}
\]
From (2.5) and (2.7), we find that
\[p_1 = -q_1 \] (2.9)
and
\[2(2\lambda - 1)^2 a_2^2 = B_1^2 \left(p_2^2 + q_2^2 \right). \] (2.10)
Also from (2.6), (2.8) and (2.10), we have
\[a_2^2 = \frac{B_1^2 (p_2 + q_2)}{2(2\lambda - 1) |\lambda B_1^2 - (2\lambda - 1) B_2|}. \] (2.11)
In view of (2.9) and (2.11), together with (1.6), we get
\[|a_2|^2 \leq \frac{B_1^2 \left(1 - |p_1|^2\right)}{(2\lambda - 1) |\lambda B_1^2 - (2\lambda - 1) B_2|}. \] (2.12)
Substituting (2.5) in (2.12) we obtain
\[|a_2| \leq \sqrt{\frac{B_1^2}{(2\lambda - 1) \left(|\lambda B_1^2 - (2\lambda - 1) B_2| \right)}}. \] (2.13)
which is desired inequality (2.1).
On the other hand, by subtracting (2.8) from (2.6) and a computation using (2.9) finally lead to
\[a_3 = a_2^2 + \frac{B_1 (p_2 - q_2)}{2(2\lambda - 1)}. \] (2.14)
From (1.6), (2.5), (2.9) and (2.14), it follows that
\[
|a_3| \leq |a_2|^2 + \frac{B_1}{2(3\lambda - 1)} \left(|p_2| + |q_2| \right)
\leq |a_2|^2 + \frac{B_1}{3\lambda - 1} \left(1 - |p_1|^2 \right)
= \left(1 - \frac{(2\lambda - 1)^2}{3\lambda - 1} \right) |a_2|^2 + \frac{B_1}{3\lambda - 1}. \] (2.15)
Substituting (2.5) and (2.13) in (2.15) we obtain the desired inequality (2.2). \qed

Remark 2.2. Theorem 2.1 is an improvement of the estimates obtained by Mazi and Altunkaya [11, Corollary 5].
If we take \(\lambda = 1 \) in Theorem 2.1, then we have the following Corollary 1.

Corollary 1. Let the function \(f(z) \) given by the Taylor-Maclaurin series expansion (1.1) be in the function class \(\mathcal{F}_2(\psi) \). Then
\[
|a_2| \leq \frac{B_1 \sqrt{B_1}}{\sqrt{B_1 + B_1^2 - B_2}}
\]
and
\[
|a_3| \leq \begin{cases}
B_1^2, & B_1 \leq \frac{1}{2} \\
\left(1 - \frac{1}{2\alpha} \right) \frac{B_1^2}{B_1 + |B_1^2 - B_2|} + \frac{B_1}{2}, & B_1 \geq \frac{1}{2}.
\end{cases}
\]

Remark 2.3. Corollary 1 is an improvement of the estimates obtained by Mazi and Altunkaya [11, Corollary 4].
If we consider the function \(\varphi_{\alpha} \), defined in Remark 1.2 (ii), in Theorem 2.1, then we get the following consequence.

Corollary 2. Let the function \(f(z) \) given by the Taylor-Maclaurin series expansion (1.1) be in the function class \(\mathcal{F} \mathcal{S}_2(\alpha) \) and \(\lambda \geq 1 \). Then
\[
|a_2| \leq \frac{2\alpha}{\sqrt{(2\lambda - 1)(2\lambda - 1 + \alpha)}}
\]
and
\[
|a_3| \leq \begin{cases}
\frac{4\alpha^2}{(2\lambda - 1)^2}, & 0 < \alpha \leq \frac{(2\lambda - 1)^2}{2(3\lambda - 1)} \\
\left(1 - \frac{(2\lambda - 1)^2}{2(3\lambda - 1)} \right) \frac{4\alpha^2}{(3\lambda - 1)(2\lambda - 1 + \alpha)} + \frac{3\alpha}{3\lambda - 1}, & \frac{(2\lambda - 1)^2}{2(3\lambda - 1)} \leq \alpha \leq 1.
\end{cases}
\]
Remark 2.4. Note that the coefficient estimates on $|a_3|$ in Corollary 2 is an improvement of the estimate obtained by Joshi et al. [10, Theorem 1].

If we take $\lambda = 1$ in Corollary 2, then we get the following consequence.

Corollary 3. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the function class $S_\lambda^*\alpha$. Then

| $a_2| \leq \frac{2\alpha}{\sqrt{1+\alpha}}$

and

| $a_3| \leq \begin{cases}
4\alpha^2, & 0 < \alpha \leq \frac{1}{4} \\
5\alpha^2 - \frac{1}{4\alpha}, & \frac{1}{4} \leq \alpha < 1
\end{cases}$

If we consider the function q_β, defined in Remark 1.2(iii), in Theorem 2.1, then we get the following consequence.

Corollary 4. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the function class $S_\lambda(\lambda, \beta)$ and $\lambda \geq 1$. Then

| $a_2| \leq \frac{2(1-\beta)}{\sqrt{(2\lambda - 1)(2\lambda - 1 + 2\lambda \beta - 1)}}$

and

| $a_3| \leq \begin{cases}
\frac{4(1-\beta)^2}{2(\lambda - 1)(1-\beta)} + \frac{2(1-\beta)}{2\lambda - 1}, & 0 \leq \beta \leq 1 - \frac{(2\lambda - 1)^2}{2(3\lambda - 1)} \\
\frac{4(1-\beta)^2}{2(\lambda - 1)}, & 1 - \frac{(2\lambda - 1)^2}{2(3\lambda - 1)} \leq \beta < 1
\end{cases}$

Remark 2.5. Note that Corollary 4 is an improvement of the estimates obtained by Joshi et al. [10, Theorem 2].

If we take $\lambda = 1$ in Corollary 4, then we get the following consequence.

Corollary 5. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the function class $S_\lambda^*(\beta)$. Then

| $a_2| \leq \begin{cases}
\sqrt{2}(1-\beta), & 0 \leq \beta \leq \frac{1}{2} \\
\frac{2(1-\beta)}{\sqrt{2}\beta}, & \frac{1}{2} \leq \beta < 1
\end{cases}$

and

| $a_3| \leq \begin{cases}
\frac{5\beta}{2}, & 0 \leq \beta < \frac{1}{2} \\
\frac{(1-\beta)(3-2\beta)}{2\beta}, & \frac{1}{2} \leq \beta \leq \frac{1}{4} \\
4(1-\beta)^2, & \frac{1}{4} \leq \beta < 1
\end{cases}$

References

