Horizontal lift in the semi-tensor bundle

Furkan Yıldırım\(^{1*}\)

\(^1\)Narman Vocational Training School, Ataturk University, 25530, Erzurum, Turkey
\(^*\)Corresponding author E-mail: furkan.yildirim@atauni.edu.tr

1 The author thanks Dr. Arif Salimov for his valuable comments and advice

Abstract

The present paper is devoted to some results concerning with the horizontal lift of tensor fields of type (1,0) from manifold B to its semi-tensor (pull-back) bundle \(tB\) of type \((p,q)\). The Jacobian of (1.1) has components

\[
\begin{aligned}
\frac{\partial x^i}{\partial \tilde{x}^\alpha} = \alpha^i_{\alpha}, \\
\frac{\partial \tilde{x}^\alpha}{\partial x^i} = \alpha^i_{\alpha}.
\end{aligned}
\]

The present paper is devoted to some results concerning with the horizontal lift of tensor fields of type (1,0) from manifold B to its semi-tensor (pull-back) bundle \(tB\) of type \((p,q)\).

Keywords: Vector field, horizontal lift, pull-back bundle, semi-tensor bundle.

2010 Mathematics Subject Classification: 53A45, 55R10, 57R25

1. Introduction

Let \(M_n\) be an \(n\)-dimensional differentiable manifold of class \(C^\infty\) and \(\pi_1 : M_n \to B_m\) the differentiable bundle determined by a submersion \(\pi_1\). Suppose that \((x') = (x^a, x'^a)\), \(a, b, \ldots = 1, \ldots, n = m; \alpha, \beta, \ldots = n - m + 1, \ldots, n\), \(i, j, \ldots = 1, 2, \ldots, n\) is a system of local coordinates adapted to the bundle \(\pi_1 : M_n \to B_m\), where \(x^a\) are coordinates in \(B_m\), and \(x'^a\) are fiber coordinates of the bundle \(\pi_1 : M_n \to B_m\).

\[
\begin{aligned}
\frac{\partial x^i}{\partial x'^j} = \alpha^i_{\alpha}, \\
\frac{\partial x'^j}{\partial x^i} = \alpha^i_{\alpha}.
\end{aligned}
\]

The Jacobian of (1.1) has components

\[
\begin{pmatrix}
A^i_{\alpha} & A^i_{\beta}
\end{pmatrix} = \begin{pmatrix}
A^i_{\alpha} & A^i_{\beta}
\end{pmatrix}.
\]

where

\[
\frac{\partial x'^a}{\partial x^i} = \alpha^a_{\alpha}.
\]

Let \((T^p_i)(B_m)(x = \pi_1(x), \tilde{x} = (x', x'^a) \in M_n)\) be the tensor space at a point \(x \in B_m\) with local coordinates \((x^1, \ldots, x^m)\), we have the holonomous frame field

\[
\partial_{x^1} \otimes \partial_{x^2} \otimes \cdots \otimes \partial_{x^i} \otimes dx^{i_1} \otimes dx^{i_2} \otimes \cdots \otimes dx^{i_k},
\]

for \(i \in \{1, \ldots, m\}\), \(j \in \{1, \ldots, m\}^q\), over \(U \subset B_m\) of this tensor bundle, and for any \((p,q)\)-tensor field \(t\) we have [14], p.163:

\[
t|U = t^{i_1\cdots i_q}_{j_1\cdots j_q} \partial_{x^{i_1}} \otimes \partial_{x^{i_2}} \otimes \cdots \otimes \partial_{x^{i_q}} \otimes dx^{j_1} \otimes dx^{j_2} \otimes \cdots \otimes dx^{j_k},
\]

then by definition the set of all points \((x') = (x^a, x'^a, x'^a)\), \(x^p = t^{i_1\cdots i_q}_{j_1\cdots j_q} x^i + m^p+q J, J, \ldots = 1, \ldots, n + m^p+q\) is a semi-tensor bundle \(T^p_i(B_m)\) over the manifold \(M_n\) [14]. The semi-tensor bundle \(T^p_i(B_m)\) has the natural bundle structure over \(B_m\), its bundle projection \(\pi : T^p_i(B_m) \to B_m\) being defined by \(\pi : (x^a, x'^a, x'^a) \to (x'^a)\). If we introduce a mapping \(\pi_2 : t^p_i(B_m) \to M_n\) by \(\pi_2 : (x^a, x'^a, x'^a) \to (x^a, x'^a)\), then \(t^p_i(B_m)\) has a bundle structure over \(M_n\). It is easily verified that \(\pi = \pi_1 \circ \pi_2\) [14].
On the other hand, let \(\varepsilon = \pi : E \to B \) denote a fiber bundle with fiber \(F \). Given a manifold \(B' \) and a map \(f : B' \to B \), one can construct in a natural way a bundle over \(B' \) with the same fiber: Consider the subset

\[
f^* E = \{ (b', \varepsilon) \in B' \times E \mid f(b') = \pi(\varepsilon) \}
\]

(together with the subspace topology from \(B' \times E \), and denote by \(\pi_1 : f^* E \to B' \), \(\pi_2 : f^* E \to E \) the projections. \(f^* \varepsilon = \pi_1 : f^* E \to B' \) is a fiber bundle with fiber \(F \), called the pull-back bundle of \(\varepsilon \) via \(f \) [31, 5, 8, 10, 14].

From the above definition it follows that the semi-tensor bundle \(t^0(B_m, \pi_2) \) is a pull-back bundle of the tensor bundle over \(B_m \) by \(\pi_1 \) (see, for example [12], [14]).

In other words, the semi-tensor bundle (induced or pull-back bundle) of the tensor bundle \(T^p(B_m, \pi, B_m) \) is the bundle \(t^p(B_m, \pi_2, M) \) over \(M \) with a total space \(t^p(B_m) \) \(= \{ ((x^a, x^{\alpha}), x^\Sigma) \in M \times (T^p(B_m)) : \forall (x^a, x^{\alpha}) = \overline{\pi}(x^a, x^\Sigma) = (x^a) \} \subset M \times (T^p(B_m)) \). To a transformation \((1.1) \) of local coordinates of \(M \), there corresponds on \(t^p(B_m) \) the coordinate transformation

\[
\begin{pmatrix}
 x^a' \\
 x^{\alpha'} \\
 x^\Sigma'
\end{pmatrix} = \begin{pmatrix}
 A^{a'}_a & 0 & 0 \\
 0 & A^{\alpha'}_{\alpha} & 0 \\
 0 & 0 & A^{\Sigma'}_{\Sigma}
\end{pmatrix}
\begin{pmatrix}
 x^a \\
 x^{\alpha} \\
 x^\Sigma
\end{pmatrix},
\]

(1.2)

The Jacobian of (1.2) is given by [14]:

\[
\tilde{A} = (A^j_f) = \begin{pmatrix}
 A^f_{a'}^a & 0 & 0 \\
 0 & A^f_{\alpha'}^{\alpha} & 0 \\
 0 & 0 & A^{f}_{\Sigma'}^\Sigma
\end{pmatrix},
\]

(1.3)

where \(f = (a, \alpha, \Sigma) \), \(J = (b, \beta, \Phi) \), \(I, J, \ldots = 1, \ldots, n + m^p + q \), \(A^f_{a'}^a = A^a_{a'}, A^f_{\alpha'}^{\alpha} = A^{\alpha}_{\alpha'} \), \(A^{f}_{\Sigma'}^\Sigma = \frac{\partial x^\Sigma}{\partial x^{\Sigma'}} \).

It is easily verified that the condition \(\text{Det} \tilde{A} \neq 0 \) is equivalent to the condition:

\[
\text{Det}(A^j_f) \neq 0, \text{Det}(A^j_B) \neq 0, \text{Det}(A^j_{\alpha}) \neq 0.
\]

Also, \(\dim t^p(B_m) = n + m^p + q \). In the special case \(n = m \), \(t^p(B_m) \) is a tensor bundle \(T^p(B_m) \) [16], p.118. In the special case, the semi-tensor bundles \(t^1(B_m) \) \((p = 1, q = 0) \) and \(t^0(B_m) \) \((p = 0, q = 1) \) are semi-tangent and semi-cotangent bundles, respectively. We note that semi-tangent and semi-cotangent bundle were examined in \([11], [7], [9] \) and \([11], [13], [15], [16] \), respectively. Also, Fattaev studied the special class of semi-tensor bundle \([2] \). We denote by \(\Sigma^p_0(t^p(B_m)) \) and \(\Sigma^p_0(B_m) \) the modules over \(F(t^p(B_m)) \) and \(F(B_m) \) of all tensor fields of type \((p, q) \) on \(t^p(B_m) \) and \(B_m \) respectively, where \(F(t^p(B_m)) \) and \(F(B_m) \) denote the rings of real-valued \(C^\infty \) – functions on \(t^p(B_m) \) and \(B_m \), respectively.

2. Horizontal lifts of vector fields and \(\gamma \) – Operator

Let \(\tilde{X} \in \Sigma^1_0(M_n) \) be a projectable vector field [9] with projection \(X = X^a(x^\alpha) \partial_a \) i.e. \(\tilde{X} = \tilde{X}^a(x^\alpha, x^{\alpha}) \partial_a + X^a(x^\alpha) \partial_a \). If we take account of (1.3), we can prove that \(\text{HH} \tilde{X} = \tilde{A}(\text{HH} X) \), where \(\text{HH} \tilde{X} \) is a vector field defined by

\[
\begin{align*}
\text{HH} \tilde{X} &= \begin{pmatrix}
 \tilde{X}^b \\
 \tilde{X}^{\beta} \\
 \tilde{X}^{(\gamma)} \end{pmatrix},
\end{align*}
\]

(2.1)

with respect to the coordinates \((x^a, x^{\alpha}, \tilde{x}^\beta) \) on \(t^0(B_m) \). We call \(\text{HH} \tilde{X} \) the horizontal lift of the vector field of the vector field \(\tilde{X} \) to \(t^0(B_m) \) [14].

Now, consider \(A \in \Sigma^p_0(B_m) \) and \(\phi \in \Sigma^1_0(B_m) \), then \(v^\alpha A \in \Sigma^1_0(t^p(B_m)) \) \((\text{vertical lift}) \), \(\gamma \phi \in \Sigma^1_0(t^p(B_m)) \) \((\text{vertical lift}) \), and \(\gamma \phi \in \Sigma^1_0(t^p(B_m)) \) respectively, components on the semi-tensor bundle \(t^p(B_m) \) [14]

\[
v^\alpha A = \begin{pmatrix}
 0 \\
 0 \\
 A^a_{\beta \alpha} \partial_a \partial_{\beta} \partial_{\alpha}
\end{pmatrix}, \quad \gamma \phi = \begin{pmatrix}
 0 \\
 0 \\
 \gamma \phi^a_{\beta} \partial_a \partial_{\beta}
\end{pmatrix},
\]

(2.2)

\[
v^\alpha \gamma \phi \in \Sigma^1_0(B_m) \quad \text{on} \quad t^p(B_m) \quad \text{is defined by} \quad \gamma \phi = \varepsilon \circ \pi_2 = \varepsilon \circ \pi_1 \circ \pi_2 = \varepsilon \circ \pi.
\]

(2.3)

Theorem 2.1. For any vector fields \(\tilde{X}, \tilde{Y} \) on \(M_n \) and \(f \in \Sigma^0_0(B_m) \), we have

\[
\text{HH} \tilde{X} f = v^\alpha \epsilon (X f).
\]
Proof. Let $\tilde{X} \in \mathfrak{X}(M_\alpha)$. Then we get by (2.1) and (2.2):

\[
HH\tilde{X}^v f = HH\tilde{X}^\pi \partial_t (^v f)
\]

\[
HH\tilde{X}^v f &= HH\tilde{X}^a \partial_a (^v f) + HH\tilde{X}^\pi \partial_\pi (^v f) \\
&= X^a \partial_a (^v f) \\
&= ^v (X f),
\]

which gives Theorem 2.1.

\[\square\]

Theorem 2.2. Let \tilde{X} be a projectable vector field on M_α. For the Lie product, we have

\[
[HH\tilde{X}, ^v A] = ^v (V_X A)
\]

for any $A \in \mathfrak{X}_b^0 (B_m)$.

Proof. If $A, B \in \mathfrak{X}_b^0 (B_m)$ and \(\left[HH\tilde{X}, ^v A \right]^b \) are components of \([HH\tilde{X}, ^v A]^l \) with respect to the coordinates \((x^b, x^\beta, x^\gamma)\) on \(t_b^0 (B_m)\), then we have

\[
[HH\tilde{X}, ^v A]^l = (HH\tilde{X})^l \partial_t (^v A)^l - (^v A)^l \partial_t (HH\tilde{X})^l
\]

\[
= (HH\tilde{X})^a \partial_a (^v A)^l + (HH\tilde{X})^\pi \partial_\pi (^v A)^l - (^v A)^a \partial_a (HH\tilde{X})^l - (HH\tilde{X})^\pi \partial_\pi (^v A)^l
\]

\[
= (HH\tilde{X})^a \partial_a (^v A)^l + (HH\tilde{X})^\pi \partial_\pi (^v A)^l + (^v A)^\pi \partial_\pi (HH\tilde{X})^l.
\]

Firstly, if $J = b$, we have

\[
[HH\tilde{X}, ^v A]^b = (HH\tilde{X})^a \partial_a (^v A)^b + (HH\tilde{X})^\pi \partial_\pi (^v A)^b
\]

\[
+ (HH\tilde{X})^\pi \partial_\pi (^v A)^b - (^v A)^\pi \partial_\pi (HH\tilde{X})^b
\]

\[
= \lambda_{pi} \partial_{pi} \tilde{X}^b
\]

\[
= 0,
\]

by virtue of (2.1) and (2.2). Secondly, if $J = \beta$, we have

\[
[HH\tilde{X}, ^v A]^{\beta} = (HH\tilde{X})^a \partial_a (^v A)^{\beta} + (HH\tilde{X})^\pi \partial_\pi (^v A)^{\beta}
\]

\[
+ (HH\tilde{X})^\pi \partial_\pi (^v A)^{\beta} - (^v A)^\pi \partial_\pi (HH\tilde{X})^{\beta}
\]

\[
= \lambda_{pi} \partial_{pi} \tilde{X}^{\beta}
\]

\[
= 0,
\]
by virtue of (2.1) and (2.2). Thirdly, if $J = \overline{\beta}$, then we have

$$
[\overline{\mathcal{H}} X, X \mathcal{V} A^\overline{\beta}] = \left(\mathcal{H} \overline{X} \right)^\alpha \partial_\alpha (X^\mathcal{V} A^\overline{\beta}) + \left(\mathcal{H} \overline{X} \right)^\alpha \partial_\alpha (X^\mathcal{V} A^\overline{\beta})
$$

by virtue of (2.1) and (2.2). On the other hand, we know that $\mathcal{V} \overline{\partial}_X$ have components

$$
\mathcal{V} \overline{\partial}_X = \begin{pmatrix} 0 & \ldots & 0 \\ (\nabla X A) & \ldots & (\nabla X A) \end{pmatrix}
$$

with respect to the coordinates $X^\mathcal{V} \overline{\partial}_X$ on $t_{\mathcal{V}}(B_m)$. Thus Theorem 2.2 is proved.

We denote the curvature tensor of ∇ by $R \in \mathfrak{S}(B_m)$. Then $R(X, Y)$ is an element of $\mathfrak{S}(B_m)$ such that,

$$
R(X, Y)Z = [\nabla X, \nabla Y]Z - \nabla [X, Y]Z
$$

for any $X, Y, Z \in \mathfrak{S}(B_m)$.

From (2.1) we have:

Theorem 2.3. Let \tilde{X} and \tilde{Y} be projectable vector fields on M_n with projections X and Y on B_m, respectively. For the Lie product, we have

$$
[\mathcal{H} \tilde{X}, \mathcal{H} \tilde{Y}]^\mathcal{V} = \mathcal{H} [\tilde{X}, \tilde{Y}]^\mathcal{V} + \mathcal{V} (\tilde{X} - \tilde{Y}) R(X, Y).
$$

Proof. If \tilde{X} and \tilde{Y} are projectable vector fields on M_n with projection $X, Y \in \mathfrak{S}(B_m)$ and

$$
\begin{pmatrix} [\mathcal{H} \tilde{X}, \mathcal{H} \tilde{Y}]^\mathcal{V} \\ [\mathcal{H} \tilde{X}, \mathcal{H} \tilde{Y}]^\beta \end{pmatrix}
$$

are components of $[\mathcal{H} \tilde{X}, \mathcal{H} \tilde{Y}]^\mathcal{V}$ with respect to the coordinates $X^\mathcal{V} \overline{\partial}_X$ on $t_{\mathcal{V}}(B_m)$, then we have

$$
[\mathcal{H} \tilde{X}, \mathcal{H} \tilde{Y}]^\mathcal{V} = [\mathcal{H} \tilde{X}]^\mathcal{V} \partial_X (\mathcal{H} \tilde{Y})^\mathcal{V} - ([\mathcal{H} \tilde{Y}]^\mathcal{V} \partial_X (\mathcal{H} \tilde{X})^\mathcal{V}.
$$

Firstly, if $J = b$, we have

$$
[\mathcal{H} \tilde{X}, \mathcal{H} \tilde{Y}]^b = \mathcal{H} \tilde{X}^\gamma \partial_\gamma (\mathcal{H} \tilde{Y})^b - \mathcal{H} \tilde{Y}^\gamma \partial_\gamma (\mathcal{H} \tilde{X})^b + \mathcal{H} \tilde{X}^\gamma \partial_\gamma (\mathcal{H} \tilde{Y})^b + \mathcal{H} \tilde{Y}^\gamma \partial_\gamma (\mathcal{H} \tilde{X})^b.
$$

Finally, if $J = b$, we have

$$
[\mathcal{H} \tilde{X}, \mathcal{H} \tilde{Y}]^b = \mathcal{H} \tilde{X}^\gamma \partial_\gamma (\mathcal{H} \tilde{Y})^b - \mathcal{H} \tilde{Y}^\gamma \partial_\gamma (\mathcal{H} \tilde{X})^b + \mathcal{H} \tilde{X}^\gamma \partial_\gamma (\mathcal{H} \tilde{Y})^b + \mathcal{H} \tilde{Y}^\gamma \partial_\gamma (\mathcal{H} \tilde{X})^b.
$$

Thus Theorem 2.2 is proved.

\[\square\]
by virtue of (2.1). Secondly, if $J = \beta$, we have

\[
\begin{align*}
\{HH\bar{X}, HH\bar{Y}\}^\beta &= (HH\bar{X})^a \partial_a (HH\bar{Y})^\beta - (HH\bar{Y})^a \partial_a (HH\bar{X})^\beta \\
&= (HH\bar{X})^a \partial_a (HH\bar{Y})^\beta - (HH\bar{Y})^a \partial_a (HH\bar{X})^\beta - (HH\bar{Y})^a \partial_a (HH\bar{Y})^\beta - (HH\bar{Y})^a \partial_a (HH\bar{X})^\beta \\
&= (HH\bar{X})^a \partial_a (HH\bar{Y})^\beta - (HH\bar{Y})^a \partial_a (HH\bar{X})^\beta \\
&= X^a \partial_a \bar{Y}^\beta - Y^a \partial_a \bar{X}^\beta \\
&= [X, Y]^\beta
\end{align*}
\]

by virtue of (2.1). Thirdly, if $J = \beta$, we have

\[
\begin{align*}
\{HH\bar{X}, HH\bar{Y}\}^\beta &= HH\bar{X}^a \partial_a (HH\bar{Y})^\beta - HH\bar{Y}^a \partial_a (HH\bar{X})^\beta \\
&= HH\bar{X}^a \partial_a (HH\bar{Y})^\beta + HH\bar{X}^a \partial_a HH\bar{Y}^\beta + HH\bar{X}^a \partial_a HH\bar{X}^\beta \\
&= X^a \partial_a HH\bar{Y}^\beta - \sum_{\lambda=1}^{p} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{Y}^\beta \\
&+ \sum_{\mu=1}^{q} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{X}^\beta \\
&= X^a \partial_a HH\bar{Y}^\beta - \sum_{\lambda=1}^{p} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{Y}^\beta \\
&+ \sum_{\mu=1}^{q} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{X}^\beta \\
&= X^a \partial_a HH\bar{Y}^\beta - \sum_{\lambda=1}^{p} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{Y}^\beta \\
&+ \sum_{\mu=1}^{q} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{X}^\beta \\
&= X^a \partial_a HH\bar{Y}^\beta - \sum_{\lambda=1}^{p} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{Y}^\beta \\
&+ \sum_{\mu=1}^{q} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{X}^\beta \\
&= X^a \partial_a HH\bar{Y}^\beta - \sum_{\lambda=1}^{p} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{Y}^\beta \\
&+ \sum_{\mu=1}^{q} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{X}^\beta \\
&= X^a \partial_a HH\bar{Y}^\beta - \sum_{\lambda=1}^{p} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{Y}^\beta \\
&+ \sum_{\mu=1}^{q} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{X}^\beta \\
&= X^a \partial_a HH\bar{Y}^\beta - \sum_{\lambda=1}^{p} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{Y}^\beta \\
&+ \sum_{\mu=1}^{q} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{X}^\beta \\
&= X^a \partial_a HH\bar{Y}^\beta - \sum_{\lambda=1}^{p} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{Y}^\beta \\
&+ \sum_{\mu=1}^{q} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{X}^\beta \\
&= X^a \partial_a HH\bar{Y}^\beta - \sum_{\lambda=1}^{p} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{Y}^\beta \\
&+ \sum_{\mu=1}^{q} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{X}^\beta \\
&= X^a \partial_a HH\bar{Y}^\beta - \sum_{\lambda=1}^{p} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{Y}^\beta \\
&+ \sum_{\mu=1}^{q} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{X}^\beta \\
&= X^a \partial_a HH\bar{Y}^\beta - \sum_{\lambda=1}^{p} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{Y}^\beta \\
&+ \sum_{\mu=1}^{q} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{X}^\beta \\
&= X^a \partial_a HH\bar{Y}^\beta - \sum_{\lambda=1}^{p} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{Y}^\beta \\
&+ \sum_{\mu=1}^{q} \sum_{\beta_1, \ldots, \beta_q} \sum_{\gamma} \alpha_1 \ldots \alpha_q \Gamma_{\beta_1 \ldots \beta_q}^\gamma \epsilon_{\beta_1 \ldots \beta_q} \partial_{\gamma} HH\bar{X}^\beta
by virtue of (2.1). On the other hand, we know that $HH [X, Y] + (\gamma - \gamma) R(X, Y)$ have components

$$
HH [X, Y] + (\gamma - \gamma) R(X, Y)
$$

with respect to the coordinates $(x^b, \gamma^b, \gamma^c)$ on $\iota_\gamma^n(B_m)$. Thus Theorem 2.3 is proved.
References