Extensions and topological conditions of NJ rings

Meimei JIANG1*, Yao WANG1, Yanli REN2
1School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, P. R. China
2School of Information Engineering, Nanjing Xiaozhuang University, Nanjing, P. R. China

Received: 21.05.2018 • Accepted/Published Online: 12.10.2018 • Final Version: 18.01.2019

Abstract: A ring \(R \) is said to be NJ if \(J(R) = N(R) \). This paper mainly studies the relationship between NJ rings and related rings, and investigates the Dorroh extension, the Nagata extension, the Jordan extension, and some other extensions of NJ rings. At the same time, we also prove that if \(R \) is a weakly 2-primal \(\alpha \)-compatible ring with an isomorphism \(\alpha \) of \(R \), then \(R[x; \alpha] \) is NJ; if \(R \) is a weakly 2-primal \(\delta \)-compatible ring with a derivation \(\delta \) of \(R \), then \(R[x; \delta] \) is NJ. Moreover, we consider some topological conditions for NJ rings and show for a NJ ring \(R \) that \(R \) is J-pm if and only if \(J\text{-Spec}(R) \) is a normal space if and only if \(\text{Max}(R) \) is a retract of \(J\text{-Spec}(R) \).

Key words: Jacobson radical, nilpotent element, weakly 2-primal ring, polynomial extension, topological space

1. Introduction

Throughout this paper, all rings are associative with identity unless otherwise stated. Given a ring \(R \), we use the symbol \(N(R) \) to denote the set of all nilpotent elements of \(R \), \(U(R) \) its unit group. The prime radical, the Levitzki radical, the upper nil-radical, the Jacobson radical, and the Brown–McCoy radical of a ring \(R \) are denoted by \(P(R) \), \(L(R) \), \(N^*(R) \), \(J(R) \), and \(BM(R) \), respectively. The symbol \(M_n(R) \) denotes the ring of \(n \times n \) matrices over a ring \(R \), \(T_n(R) \) denotes the ring of \(n \times n \) upper triangular matrices over \(R \), \(D_n(R) \) denotes the subring \(\{ A \in T_n(R) \mid \text{the diagonal entries of } A \text{ are all equal} \} \) of \(T_n(R) \), and \(V_n(R) \) denotes the ring of all matrices \((a_{ij}) \) in \(D_n(R) \) such that \(a_{ij} = a_{(i+1)(j+1)} \) for \(i = 1, 2, \ldots, n-2 \) and \(j = 1, 2, \ldots, n-1 \).

In recent years, a growing number of articles have studied the class of rings that is associated with the set \(N(R) \) of all nilpotent elements of a ring \(R \). In 1973, Shin [21] proved that the prime radical \(P(R) \) coincides with the set of all nilpotent elements of \(R \) if and only if every minimal prime ideal is completely prime. In 1993, the term 2-primal, which satisfies \(P(R) = N(R) \), was created by Birkenmeier et al. [5]. At the same time, they also studied some fundamental properties of 2-primal rings and proved that the subring, direct sum of 2-primal rings and the polynomial ring \(R[x] \), and the ring of all \(n \times n \) upper triangular matrices \(T_n(R) \) over a 2-primal ring \(R \) are also 2-primal. Since then, many papers have further researched 2-primal rings. For example, Marks [16] investigated conditions on ideals of a 2-primal ring \(R \) that will ensure that the skew polynomial ring \(R[x; \alpha] \) and the differential polynomial \(R[x; \delta] \) be 2-primal.

In 2001, Marks [17] proposed NI rings. A ring \(R \) is called NI if the upper nilradical \(N^*(R) \) coincides with...
Jiang et al./Turk J Math

the set of all nilpotent elements of R. Note that a ring R is NI if and only if N(R) forms an ideal. Obviously, every 2-primal ring is NI, but the converse is negative by Example 1.2 of [12]. Hwang et al. [12] studied the basic structure of NI rings and showed that R is NI if and only if every subring (possibly without identity) of R is NI if and only if every minimal strongly prime ideal is completely prime if and only if R/N^+(R) is reduced. They also proved that the direct sum and the direct limit of a direct system of NI rings are also NI. In addition, they investigated topological conditions for NI rings relating to the space SSpec(R) of strongly prime ideals of R and proved for an NI ring R that R is weakly pm if and only if Max(R) is a retract of SSpec(R) if and only if SSpec(R) is normal, where Max(R) is the space of maximal ideals of R.

More generally, in 2011, Chen et al. [7] called a ring R weakly 2-primal if the set of nilpotent elements in R coincided with its Levitzki radical L(R). By the definition, we have the following implication: 2-primal ⇒ weakly 2-primal ⇒ NI. The converse is negative by [7]. Meanwhile, they proved that R is weakly 2-primal if and only if T_n(R) is weakly 2-primal and if R is a weakly 2-primal α-compatible ring, then R[x; α] is weakly 2-primal. Moreover, Wang et al. [24] further showed that if R is (α, δ)-compatible, then R is weakly 2-primal if and only if the Ore extension R[x; α, δ] is weakly 2-primal.

Naturally, in this paper, we will study the relationship between the Jacobson radical J(R) and the set of nilpotent elements of a ring R and put forward the concept of NJ rings. A ring R is called NJ if the Jacobson radical coincides with the set of all nilpotent elements, that is, J(R) = N(R). First, we research the relationship between 2-primal rings, weakly 2-primal rings, NI rings, and NJ rings and we also give some examples of NJ rings. Second, we study some fundamental properties of NJ rings and prove that, for some conditions, the trivial extension, the direct product, the Dorroh extension, the Nagata extension, the Jordan extension, and the direct limit are also NJ. Third, we investigate the polynomial extension of NJ rings and show that if R is weakly 2-primal α-compatible with an automorphism α of R, then R[x; α] is NJ; if R is weakly 2-primal δ-compatible or δ-Armendariz NJ with a derivation δ of R, then R[x; δ] is NJ. Lastly, we apply the topological methods to study some topological conditions for NJ rings and prove for an NJ ring R that R is J-pm if and only if J-Spec(R) is a normal space if and only if Max(R) is a retract of J-Spec(R).

2. Some properties of NJ-rings

Definition 2.1 A ring R is called an NJ ring if the set of nilpotent elements in R coincides with its Jacobson radical, that is, N(R) = J(R).

Clearly, every NJ ring is NI, but the converse is negative by the following example.

Example 2.2 Let R = Z[[x]]. Then R is a domain (hence NI) and N(R) = 0, but J(Z[[x]]) = xZ[[x]] ≠ 0 and so R is not an NJ ring.

Proposition 2.3 (1) A ring R is NJ if and only if R is NI and J(R) is nil.

(2) A ring R is an NJ ring if and only if R is an NI ring and R/N^+(R) is J-semisimple.

Proof (1) Suppose that R is NJ. Then J(R) = N(R) is nil and R is NI. Conversely, suppose that R is NI and J(R) is nil. Then we have N^+(R) = N(R) ⊆ J(R) ⊆ N(R) and so R is NJ.

(2) Every NJ ring is NI. Since N^+(R) ⊆ J(R), we get J(R/N^+(R)) = J(R)/N^+(R). On the other hand, J(R) = N(R) = N^+(R) implies J(R)/N^+(R) = 0 and so R/N^+(R) is J-semisimple.
Conversely, since \(N(R) = N^*(R) \subseteq J(R) \), we have \(J(R)/N^*(R) = J(R/N^*(R)) = 0 \) and so \(J(R) = N^*(R) = N(R) \). It is proved that \(R \) is an NJ ring. \(\square \)

Example 2.2 also proves that a 2-primal ring (hence weakly 2-primal) is not NJ. Meanwhile, we can also find an NJ ring that it is not 2-primal by Example 1.7 of [14].

Proposition 2.4 If \(R \) is an NJ ring and satisfies a polynomial identity, then \(R \) is weakly 2-primal.

Proof Since \(R \) is an NJ ring, we have \(L(R) \subseteq J(R) = N(R) \). As it is well known that if a ring \(R \) satisfies a polynomial identity, then every nil ideal of \(R \) is locally nilpotent. Hence, \(N(R) \subseteq L(R) \), completed. \(\square \)

In the following, we supply several examples of NJ rings. We can see that NJ rings are abundant.

Example 2.5 (1) Recall that a ring \(R \) (without 1) is called nil if every element in \(R \) is nilpotent, i.e. \(R = N(R) \). Every nil ring is NJ.

(2) Every division ring is an NJ ring. In fact, \(N(R) = J(R) = 0 \).

(3) Every Boolean ring is an NJ ring. Note that the Jacobson radical of a ring \(R \) contains no idempotent elements except for 0. Then the Jacobson radical of the Boolean ring \(R \) is 0. On the other hand, for every \(a \in N(R) \), there exists a positive integer \(n \) such that \(a^n = 0 \). Since \(R \) is a Boolean ring, we have \(a^2 = a \) and so \(N(R) = 0 \).

(4) Recall that a ring \(R \) is a Jacobson ring if every prime ideal is an intersection of primitive ideals. Every commutative Jacobson ring is NJ. Let \(R \subseteq A \) be a commutative ring such that \(A \) is finitely generated as an \(R \)-algebra and \(R \) is a Jacobson ring. Then, by Corollary 5.4 of [15], \(A \) is also a Jacobson ring. In particular, \(A \) is an NJ ring.

(5) Let \(R \) be a commutative affine algebra over a field \(K \). By ([15], p60), the Jacobson radical of \(R \) is exactly the set of nilpotent elements in \(R \). Thus, \(R \) is an NJ ring.

(6) Every semi-Abelian \(\pi \)-regular ring is NJ by Corollary 3.13 of [6].

(7) Every locally finite Abelian ring is NJ by Proposition 2.5 of [11].

Considering Example 2.5 (1, 2, 3), one may naturally ask whether the converse of Example 2.5 (1, 2, 3) also holds. The answer is negative, as can be seen by \(R = \mathbb{Z} \). In fact, \(J(R) = N(R) = 0 \) and so \(R \) is an NJ ring, but \(R \) is not a division ring. At the same time, \(R \) is also not a nil-ring and a Boolean ring.

As is well known, every division ring is local, and every division ring is NJ by Example 2.5 (2), so it is natural to ask whether local rings are related to NJ rings. However, there is no implication between the classes of local rings and NJ rings by the following.

Example 2.6 (1) Let \(R = \mathbb{Z} \). Obviously, \(R \) is an NJ ring, but \(R \) is not local.

(2) If \(R \) is a commutative local domain, then \(N(R) = 0 \), but \(J(R) \) is the unique maximal ideal of \(R \), which is nonzero if \(R \) is not a field in ([15, p 60]).

Proposition 2.7 Supposing that \(R \neq 0 \), and every \(a \notin U(R) \) is nilpotent, then \(R \) is a NJ ring, where \(U(R) \) is the unit group of \(R \).

Proof By hypothesis, we have \(R \setminus U(R) = N(R) \). The following is similar to the proof of ([15, Proposition 19.3]). If \(a \notin N(R) = R \setminus U(R) \), then \(a \in U(R) \) and there exists \(r \in R \) such that \(ar = ra = 1 \). Thus,
1 − ra = 0 ∉ U(R) and so a ∉ J(R). It is implied that J(R) ⊆ R \ U(R) = N(R). For the converse inclusion, if a ∈ N(R) = R \ U(R), then a ∉ U(R). Let k be the smallest positive integer such that a^k = 0. We claim that Ra ⊆ R \ U(R) = N(R). Assume that there exists some ra ∈ Ra such that ra ∈ U(R). Then (ra)a^{k−1} = 0 implies a^{k−1} = 0. This is a contradiction. Thus, Ra is a nil left ideal, and so a ∈ Ra ⊆ J(R). This implies N(R) ⊆ J(R), and R is an NJ ring.

Recall that a ring R is called reduced if there are no nonzero nilpotent elements in R. Note that a division ring is a domain and a domain is reduced. However, there is no relationship between the classes of reduced rings (domains) and NJ rings by the following examples.

Example 2.8 Let F be a field and R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}. Then J(R) = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix} = N(R) and so R is an NJ ring. However, R is not reduced (hence, R is not a domain). In fact, take A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; then A^2 = 0, but A ≠ 0.

Proposition 2.9 If R is a reduced ring and J(R) is nil, then R is an NJ ring.

Proof Since R is reduced, we have N(R) = 0. On the other hand, J(R) is nil, that is, J(R) ⊆ N(R) = 0. Hence, J(R) = N(R) = 0 and so R is an NJ ring.

Recall that a ring R is feckly reduced if R/J(R) is reduced. A ring R is feckly Armendariz if R/J(R) is Armendariz. Obviously, every feckly reduced ring is feckly Armendariz. A ring R is directly finite if ab = 1 implies ba = 1 for a, b ∈ R. By Proposition 2.6 (2) of [14], every feckly Armendariz ring is directly finite.

Proposition 2.10 Every NJ ring is feckly reduced. Hence, every NJ ring is directly finite. Conversely, if R is a feckly reduced and J(R) is nil, then R is NJ.

Proof Let R be an NJ ring. If r^2 = 0 for every r ∈ R/J(R), then r^2 ∈ J(R). We have r ∈ N(R) = J(R) since R is NJ. Hence, r = 0 and so R is a feckly reduced ring. Conversely, it is easy to see that N(R) ⊆ J(R) since R is feckly reduced. Therefore, R is NJ by J(R) ⊆ N(R).

However, the converse of Proposition 2.10 is not correct by Example 2.2 (1). In fact, R/J(R) ≅ Z is a reduced ring. Recall that a ring R is regular if for every a ∈ R there exists x ∈ R such that a = axa. Note that J(R) = 0 if R is a regular ring. Moreover, we can see that reduced, regular, and NJ are mutually independent by the following examples and Example 2.2. Let R = Z. Then R is reduced and R is also NJ, but R is not regular. If R = M_2(F) and F is a field, we have that R is a regular ring since F is regular. However, R is not reduced. At the same time, R is not NJ since J(R) = 0 ≠ N(R). This means that there exists a regular ring such that it is not NJ.

Proposition 2.11 (1) Every reduced regular ring is NJ.
(2) If R is a regular ring, then we have the following equivalent:

(i) R is reduced;
(ii) R is NJ;
(iii) R is NI.
Proposition 2.12 (1) Let R be a ring. Then we have the following equivalent:

(i) A ring R is NJ;

(ii) Every ideal I of R is an NJ ring;

(iii) R is an NI ring and every proper ideal of R is NJ.

(2) Let $I \subseteq J(R)$ be an ideal of R. If R is NJ, then R/I is NJ.

(3) Let I be a nil ideal of R. If R/I is an NJ ring, then R is NJ.

(4) Let I be an ideal of R and I NJ as a ring. If $a \in N(R)$, then $ab, ba \in N(R)$ for any $b \in I$.

(5) Let I be an ideal of R. Then the following are equivalent:

(i) R/I is an NJ ring;

(ii) $x^n \in I$ if and only if $x \in p(I)$, that is, $p(I) = \{x \in R | x^n \in I$ for some $n \in \mathbb{N}\}$, where $p(I) = \cap\{J | J$ is a maximal right ideal of R containing I\}.

Proof (1) (i) \Leftrightarrow (ii) and (i) \Rightarrow (iii) are clear by $J(I) = J(R) \cap I = N(R) \cap I = N(R)$. For (iii) \Rightarrow (i), we only need to show $J(R) \subseteq N(R)$ since R is NI. If $a \in J(R)$, then we have $J(RaR) = N(RaR)$ by the hypothesis. On the other hand, since $a \in RaR$ and $a \in J(R)$, we can obtain $a \in J(R) \cap RaR = J(RaR)$ and so $a \in N(RaR) = N(R) \cap RaR$. This implies $a \in N(R)$ and R is NJ.

(2) Since $I \subseteq J(R)$, we have $J(R/I) = J(R)/I$. If $\bar{r} \in N(R/I)$, then there exists a positive integer n such that $\bar{r}^n = 0$ and so $r^n \in I \subseteq J(R) = N(R)$. Hence, $r \in N(R) = J(R)$ and $\bar{r} \in J(R)/I = J(R/I)$. For the converse inclusion, if $\bar{a} \in J(R/I) = J(R)/I$, then $a \in J(R) = N(R)$ and so $\bar{a} \in N(R/I)$. This implies that R/I is an NJ ring.

(3) If $r \in N(R)$, then there exists a positive integer n such that $r^n = 0$. Thus, we have $\bar{r}^n = 0$ in R/I and so $\bar{r} \in N(R/I) = J(R/I)$. By hypothesis, we have $I \subseteq J(R)$ and $\bar{r} \in J(R/I) = J(R)/I$. Hence, $r \in J(R)$ and $N(R) \subseteq J(R)$. On the other hand, if $a \in J(R)$, then $\bar{r} \in J(R/I) = J(R/I) = N(R/I)$. Thus, there exists a positive integer m such that $\bar{r}^m = 0$ and so $r^m \in I \subseteq N(R)$. Hence, $r \in N(R)$ and $J(R) \subseteq N(R)$, as desired.

(4) Suppose $a^n = 0$. We will show that $a^{n-k}b \in N(R)$ for every $0 \leq k \leq n-1$, by induction on k. Then the $k = n-1$ case will complete the proof. When $k = 0$, $a^nb = 0 \in N(R).$ Assume that $a^{n-k}b \in N(R)$ with $0 \leq k < n-1$. Then there exists a positive integer m such that $(a^{n-k}b)^m = 0$ and so $(a^{n-k-1}ba)^{m+1} = 0$. Thus, we have $a^{n-k-1}ba \in N(R) \cap I = N(I) = J(I)$ since I is NJ, and so $a^{n-k-1}ba^{n-k-1}b \in J(I) = N(I)$. Therefore, $a^{n-k-1}b$ is nilpotent and the induction goes through.

(5) (i) \Rightarrow (ii) For any $y \in \{x \in R | x^n \in I$ for some $n \in \mathbb{N}\}$, then there exists a positive integer n such that $y^n \in I$. In $\tilde{R} = R/I$, we have $\bar{y}^n = 0$ and so $\bar{y} \in N(R/I) = J(R/I)$. Note that J/I is a maximal right ideal of R/I if and only if J is a maximal right ideal of R containing I. This implies $\bar{y} \in J/I$ and $y \in J$. Thus, $x \in p(I)$. Let $x \in p(I)$. Then, for every maximal right ideal J of R containing I, we have $x \in J$ and so $\bar{x} \in J/I$. That is, $\bar{x} \in J(R/I) = N(R/I)$. There exists $n \in \mathbb{N}$ such that $x^n \in I$.

(ii) \Rightarrow (i) For any $\bar{r} \in N(R/I)$, there exists $n \in \mathbb{N}$ such that $r^n \in I$ and so $r \in p(I)$. By the above proof, we can obtain $\bar{r} \in J(R/I)$. Conversely, if $\bar{a} \in J(R/I)$, then $a \in p(I)$. Thus, we have $a^n \in I$ for some n. Therefore, $\bar{a} \in N(R/I)$. □

Considering Proposition 2.12 (2)(3), if R/I is an NJ ring and I is also NJ as a ring without 1, then R is also NJ. However, the following example gives a negative answer.
Example 2.13 Let F be a field and $R = M_2(F)$. Then $J(R) = M_2(J(F)) = 0$, but $N(R) \neq 0$. Thus, R is not NJ. Take $I = \begin{pmatrix} F & 0 \\ 0 & F \end{pmatrix}$. Obviously, we have $J(I) = N(I) = 0$ and so I is NJ as a ring. On the other hand, $R/I \cong F$ and we can obtain $J(R/I) = N(R/I) = 0$. Hence, R/I is NJ.

Proposition 2.14 Let e be an idempotent element of R. If R is an NJ ring, then eRe is also NJ.

Proof Notice that $J(eRe) = J(R) \cap eRe = N(R) \cap eRe = N(eRe)$. □

Corollary 2.15 If there exists a ring R such that $M_n(R)$ is an NJ ring for all $n \geq 2$, then R is NJ.

Proof Since $E_{11}M_n(R)E_{11} = RE_{11} \cong R$, we have that R is NJ by Proposition 2.14. □

The index of nilpotency of a nilpotent element a in a ring R is the least positive integer n such that $a^n = 0$. The index of nilpotency of a subset X of R is the supremum of the indices of nilpotency of all nilpotent elements in X. If such a supremum is finite, then X is said to be of bounded index of nilpotency.

Proposition 2.16 (1) Let $R = \bigoplus_{\gamma \in \Gamma} R_\gamma$ be a direct sum of rings R_γ and Γ an indexed set. Then R is an NJ ring if and only if R_γ is an NJ ring for every $\gamma \in \Gamma$.

(2) Let $R = \prod_{\gamma \in \Gamma} R_\gamma$ be a direct product of rings R_γ and Γ an indexed set. If R is of bounded index of nilpotency, then R is an NJ ring if and only if R_γ is a NJ ring for every $\gamma \in \Gamma$.

Proof (1) Assume that R_γ is an NJ ring for each $\gamma \in \Gamma$. It comes from $J(\bigoplus_{\gamma \in \Gamma} R_\gamma) = \bigoplus_{\gamma \in \Gamma} J(R_\gamma) = \bigoplus_{\gamma \in \Gamma} N(R_\gamma) = N(\bigoplus_{\gamma \in \Gamma} R_\gamma)$. Conversely, suppose that R is an NJ ring. If $a_\gamma \in J(R_\gamma)$ for every $\gamma \in \Gamma$, then $(0, \ldots, a_\gamma, 0, \ldots) \in \bigoplus_{\gamma \in \Gamma} J(R_\gamma) = J(\bigoplus_{\gamma \in \Gamma} R_\gamma) = N(\bigoplus_{\gamma \in \Gamma} R_\gamma)$ and so $a_\gamma \in N(R_\gamma)$. On the other hand, if $a_\gamma \in N(R_\gamma)$, then $(0, \ldots, a_\gamma, 0, \ldots) \in N(\bigoplus_{\gamma \in \Gamma} R_\gamma) = J(\bigoplus_{\gamma \in \Gamma} R_\gamma) = \bigoplus_{\gamma \in \Gamma} J(R_\gamma)$. Hence, $a_\gamma \in J(R_\gamma)$. This completes the proof.

(2) Since R is of bounded index of nilpotency, we have $N(\prod_{\gamma \in \Gamma} R_\gamma) = \prod_{\gamma \in \Gamma} N(R_\gamma)$. This implies that $J(\prod_{\gamma \in \Gamma} R_\gamma) = \prod_{\gamma \in \Gamma} J(R_\gamma) = \prod_{\gamma \in \Gamma} N(R_\gamma) = N(\prod_{\gamma \in \Gamma} R_\gamma)$. Hence, R is an NJ ring. For the converse, the proof is similar to the proof of (1). □

Corollary 2.17 For a central idempotent element $e \in R$, eR and $(1-e)R$ are NJ if and only if R is NJ.

Proof If R is an NJ ring, then eR and $(1-e)R$ are NJ since e is central. Conversely, since $R = eR \oplus (1-e)R$, it comes from Proposition 2.16 (1). □

Proposition 2.18 Let R be a ring. Then the following are equivalent:

(1) R is an NJ ring;

(2) $T_n(R)$ is an NJ ring for all $n \geq 2$;
(3) \(D_n(R) \) is an NJ ring for all \(n \geq 2 \);
(4) \(V_n(R) \) is an NJ ring for all \(n \geq 2 \).

Proof We apply the method in the proof of Proposition 2.5 in [14] to prove this proposition.

(1) \(\Leftrightarrow \) (2) Let \(I = \{ A \in T_n(R) \mid \text{each diagonal entry of } A \text{ is zero} \} \). Then \(I \) is a nil ideal of \(T_n(R) \) and \(I \subseteq J(T_n(R)) \). On the other hand, we can obtain \(T_n(R)/I \cong \bigoplus_{i=1}^{n} R_i \) where \(R_i = R \). The proof is completed by Proposition 2.12 (3) and Proposition 2.16 (1).

(1) \(\Leftrightarrow \) (3) It is similar to the above proof. Let \(I = \{ B \in D_n(R) \mid \text{each diagonal entry of } B \text{ is zero} \} \). Then \(I \) is a nil ideal of \(D_n(R) \) and \(D_n(R)/I \cong R \).

(1) \(\Leftrightarrow \) (4) Let \(I = \{ C \in V_n(R) \mid \text{each diagonal entry of } C \text{ is zero} \} \). Then \(I \) is a nil ideal of \(V_n(R) \) and \(V_n(R)/I \cong R \). \(\square \)

Considering Corollary 2.15 and Proposition 2.18, it is natural to ask whether \(M_n(R) \) is also NJ when \(R \) is an NJ ring for all \(n \geq 2 \). However, the answer is negative by the following.

Example 2.19 Let \(R = \mathbb{Z}_2 \) and \(S = M_2(\mathbb{Z}_2) \). Clearly, \(R \) is an NJ ring from \(J(R) = N(R) = 0 \). On the other hand, \(J(S) = M_2(J(\mathbb{Z}_2)) = 0 \), but \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in N(S) \neq 0 = J(S) \). Therefore, \(S \) is not an NJ ring.

Recall that for a ring \(R \) and an \((R,R)\)-bimodule \(M \), the trivial extension of \(R \) by \(M \) is the ring \(T(R,M) = R \bigoplus M \) with the usual addition and the following multiplication: \((r_1,m_1)(r_2,m_2) = (r_1r_2,r_1m_2 + m_1r_2)\). This is isomorphic to the ring of all matrices \(\begin{pmatrix} r & m \\ 0 & r \end{pmatrix} \) where \(r \in R, m \in M \) and the usual matrix operations are used.

Corollary 2.20 (1) Let \(R = \begin{pmatrix} S & M \\ 0 & T \end{pmatrix} \), where \(S \) and \(T \) are rings and \(M \) is an \((S,T)\)-bimodule. Then \(S \) and \(T \) are both NJ if and only if \(R \) is NJ.

(2) Let \(R \) be a ring and \(M \) an \((R,R)\)-bimodule. Then the trivial extension \(T(R,M) \) is an NJ ring if and only if \(R \) is an NJ ring.

3. Extensions of NJ rings

In this section, we focus on some extensions of NJ rings, such as the Dorroh extension, the ideal-extension, the Nagata extension, the Jordan extension, and so on.

Let \(R_0 \) be an algebra with identity over a commutative ring \(S \). Due to [8], the Dorroh extension of \(R_0 \) by \(S \) is the Abelian group \(S \bigoplus R_0 \) with multiplication given by \((s_1,r_1)(s_2,r_2) = (s_1s_2,s_1r_2 + s_2r_1 + r_1r_2)\) for \(s_i \in S, r_i \in R_0 \).

Proposition 3.1 Let \(R_0 \) be an algebra with identity over a field \(F \). Then \(R_0 \) is an NJ ring if and only if the Dorroh extension \(R \) of \(R_0 \) by \(F \) is an NJ ring.

Proof By the proof of Proposition 2.7 in [14], we obtain that \(J(R) = 0 \bigoplus J(R_0). \) On the other hand, since \(F \) is a field, we have \(N(R) = 0 \bigoplus N(R_0). \) The proof is completed by the condition. \(\square \)
Let R be a ring and V an (R, R)-bimodule that is a general ring (possibly with no unity) in which $(vw)r = v(wr)$, $(vr)w = v(rw)$ and $(rv)w = r(vw)$ hold for all $v, w \in V$ and $r \in R$. Then ideal-extension $I(R; V)$ of R by V is defined to be the additive Abelian group $I(R; V) = R \oplus V$ with multiplication $(r, v)(s, w) = (rs, rw + vs + vw)$.

Proposition 3.2 Suppose that for any $v \in V$, there exists $w \in V$ such that $v + w + vw = 0$. Then we have the following:

1. If an ideal-extension $S = I(R; V)$ is an NJ ring, then R and V are both NJ;
2. If R is a reduced NJ ring and V is NJ, then the ideal-extension $S = I(R; V)$ is NJ.

Proof

1. By hypothesis, we can obtain $V = J(V)$ and $(0, V) \subseteq J(S)$. If $v \in J(V) = V$, then $(0, v) = (0, v) = (0, 0) \in V$. Thus, we have $v^n = 0$ and $v \in N(V)$. Therefore, V is an NJ ring. If $a \in J(R)$, then $(a, 0) \in S$. Next we claim that $(a, 0) \in J(S)$. For any $(r, v) \in S$, we have $(1, 0) - (a, 0)(r, v) = (1 - ar, -av) = (1 - a, 0)(1 - ar, -av)$. Since $(1, (1 - ar)^{-1}(-av)) = (1, 0) + (0, (1 - ar)^{-1}(-av)) \in U(S)$ by $(0, v) \subseteq J(V)$ and $a \in J(R)$, we can obtain $(1, 0) - (a, 0)(r, v) \in U(S)$ and so $(a, 0) \in J(S) = N(S)$. Then there exists a positive integer n such that $(a, 0)^n = (0, 0)$. Thus, we have $a^n = 0$ and $a \in N(R)$. If $a \in N(R)$, then $(a, 0) \in N(S) = J(S)$. For any $r \in R$, we have $(1, 0) - (a, 0)(r, 0) = (1 - ar, 0) \in U(S)$ and so $1 - ar \in U(R)$. Thus, $a \in J(R)$ and so R is an NJ ring.

2. If $(a, v) \in J(S)$, then we have $(a, 0) \in J(S)$ since $(0, v) \in J(S)$ and $(a, v) = (a, 0) + (0, v)$. For any $r \in R$, $(1, 0) - (a, 0)(r, 0) = (1 - ar, 0) \in U(S)$ and so $1 - ar \in U(R)$. Thus, $a \in J(R) = N(R) = 0$. This implies that $(a, v) = (0, v)$. Therefore, we have $v \in V = J(V) = N(V)$ and so $(a, v) \in N(S)$. For the converse, if $(a, v) \in N(S)$, then there exists a positive integer n such that $(a, v)^n = (0, 0)$. Thus, we have $a^n = 0$ and so $s = 0$ by the multiplication and reduced property. This implies that $(a, v) = (0, v) \in J(S)$. Therefore, the ideal-extension $S = I(R; V)$ is NJ.

Due to Nagata [19], let R be a commutative ring, M be a left R-module, and σ be an endomorphism of R. Given $R \oplus M$ (1) a possibly noncommutative ring structure with multiplication $(r_1, m_1)(r_2, m_2) = (r_1r_2, \sigma(r_1)m_2 + r_2m_1)$, where $r_1 \in R$ and $m_1 \in M$, we call this extension the Nagata extension of R by M and σ.

Proposition 3.3 Let R be a commutative ring and σ an endomorphism of R. Then R is an NJ ring if and only if the Nagata extension S of R by R and σ is also NJ.

Proof In order to prove this proposition, we only need to show that $N(S) = N(R) \oplus R$ and $J(S) = J(R) \oplus R$. If $(a, b) \in N(S)$, then there exists a positive integer n such that $(a, b)^n = (0, 0)$ and so $a^n = 0$. This implies that $(a, b) \in N(R) \oplus R$. If $(a, b) \in N(R) \oplus R$, then there is a positive integer m such that $a^m = 0$. Moreover, we can imply that $[(a, b)^m]^2 = (a^m, \sigma^m)^2 = (0, \sigma^m)^2 = (0, 0)$ and so $(a, b) \in N(S)$. Therefore, it is implied that $N(S) = N(R) \oplus R$. If $(a, b) \in J(S)$, then we have $(1, 0) - (a, b)(s, r) = (1 - as, -\sigma(a)r - sb) \in U(S)$ for any $(s, r) \in S$. By the multiplication, this implies that $1 - as$ is invertible in R. That is, we have $a \in J(R)$ and so $(a, b) \in J(R) \oplus R$. If $(a, b) \in J(R) \oplus R$, then we have $1 - ax \in U(R)$ for any $x \in R$. For any $(s, r) \in S$, we consider $(1, 0) - (a, b)(s, r) = (1 - as, -\sigma(a)r - sb)$. Since R is commutative,
we can find \(y = \sigma[(1 - as)^{-1}] \cdot (1 - as)^{-1} \cdot [\sigma(a)r + sb] \) such that \(((1 - as)^{-1}, y)(1 - as, -\sigma(a)r - sb) = (1 - as, -\sigma(a)r - sb)(1 - as)^{-1}, y) = (1, 0) \). Thus, \((a, b) \in J(S)\), completed. \(\square \)

Let \(\alpha \) be an injective homomorphism of a ring \(R \) and \(A \) an extension ring of \(R \). If \(\alpha \) can be extended to an isomorphism of \(A \) and \(A = \bigcup_{n=0}^{\infty} \alpha^{-n}(R) \), then we call this extension ring \(A \) the Jordan extension of \(R \).

Proposition 3.4 Let \(\alpha \) be an isomorphism of \(R \). If \(R \) is an NJ ring, then the Jordan extension \(A \) of \(R \) is also NJ.

Proof If \(a \in N(A) \), then there exists a positive integer \(n \) such that \(\alpha^n = 0 \) and there is an integer \(m \geq 0 \) such that \(\alpha^m(a) \in R \). Then we have \([\alpha^m(a)]^n = \alpha^m(a^n) = 0 \) and so \(\alpha^m(a) \in N(R) = J(R) \) since \(R \) is NJ. For any \(r \in A \), there exists an integer \(k \geq 0 \) such that \(\alpha^k(r) \in R \). Taking \(l = m + k \), it is well known that \(\alpha(J(R)) \subseteq J(R) \) since \(\alpha \) is an isomorphism of \(R \). This implies \(\alpha^l(a) \in J(R) \) and \(\alpha^l(r) \in R \). Then we can obtain that there exists \(b \in R \) such that \(\alpha^l(a)\alpha^l(r)+b+\alpha^l(a)\alpha^l(r)b=0 \) and so \(\alpha^l(ar+\alpha^{-l}(b)+ara^{-l}(b)) = 0 \). Since \(\alpha \) is an isomorphism, we have \(ar+\alpha^{-l}(b)+ara^{-l}(b) = 0 \). Therefore, it is implied that \(a \in J(A) \) and \(N(A) \subseteq J(A) \). If \(a \in J(A) \), then there exists an integer \(n \geq 0 \) such that \(\alpha^n(a) \in R \). For any \(r \in R \), \(aa^{-n}(r) \in J(A) \) and there is \(b \in A \) such that \(aa^{-n}(r) + b + aa^{-n}(r)b = 0 \). We can find an integer \(m \geq 0 \) such that \(\alpha^m(b) \in R \) for \(b \in A \). Thus, we have \(\alpha^n(aa^{-n}(r) + b + aa^{-n}(r)b) = 0 \) and so \(\alpha^n(a)r + \alpha^n(b) + \alpha^n(a)\alpha^n(b) = 0 \). This implies \(\alpha^n(a) \in J(R) = N(R) \) since \(\alpha^n(b) = \alpha^n(m)(\alpha^n(b)) \in R \). Hence, there exists a positive integer \(k \) such that \(\alpha^n(a^k) = [\alpha^n(a)]^k = 0 \) and so \(a^k = 0 \). This implies \(a \in N(A) \) and \(J(A) \subseteq N(A) \). Therefore, we show that \(A \) is NJ. \(\square \)

Let \(D \) be a ring and \(C \) a subring of \(D \) with \(1_D \in C \) and \(R[D, C] \) denotes the set \(\{(a_1, \ldots, a_n, b, b, \ldots)|a_i \in D, b \in C, n \geq 1, 1 \leq i \leq n\} \). Then \(R[D, C] \) is a ring under the componentwise addition and multiplication. It is well known that \(J(R[D, C]) = R[J(D), J(D) \cap J(C)] \).

Proposition 3.5 Let \(D \) be a ring and \(C \) a subring of \(D \) with \(1_D \in C \). Then \(R[D, C] \) is an NJ ring if and only if \(D \) and \(C \) are both NJ.

Proof Assume that \(D \) and \(C \) are both NJ. It is sufficient that \(N(R[D, C]) = R[N(D), N(C)] \). In fact, if \((d_1, d_2, \ldots, d_n, c, c, \ldots) \in N(R[D, C]) \), then there exists a positive integer \(k \) such that \((d_1, d_2, \ldots, d_n, c, c, \ldots)^k = 0 \). Thus, for every \(1 \leq i \leq n \), we have \(d_i^k = 0 \) and \(c^k = 0 \). That is, \(d_i \in N(D) \) and \(c \in N(C) \). Conversely, if \((d_1, d_2, \ldots, d_n, c, c, \ldots) \in R[N(D), N(C)] \), then we always find a positive integer \(m \) such that \(d_i^m = c^m = 0 \) for \(1 \leq i \leq n \). Thus, we have \((d_1, d_2, \ldots, d_n, c, c, \ldots) \in N(R[D, C]) \). By the hypothesis, we can obtain \(J(R[D, C]) = R[J(D), J(D) \cap J(C)] \). \(J(D) = N(D) \) and \(N(C) = J(D) \cap J(C) \). Thus, we can obtain that \(D \) is an NJ ring and \(N(C) \subseteq J(C) \). If \(c \in J(C) \), then \(1 - cr \in U(C) \) for every \(r \in C \). For every \((d_1, d_2, \ldots, d_n, r, r, \ldots) \in R[D, C] \), we have \((1, 1, 1, \ldots) - (0, 0, 0, \ldots)(d_1, d_2, \ldots, d_n, r, r, \ldots) = (1, 1 - cr, 1 - cr, \ldots) \in U(R[D, C]) \). It is implied that \((0, 0, 0, c, c, \ldots) \in J(R[D, C]) \). \(J(D) \cap J(C) \) and so \(c \in J(D) \cap J(C) = N(C) \). Moreover, we can get \(N(C) = J(C) \) and so \(c \) is also an NJ ring. \(\square \)

Proposition 3.6 Let \((I, \leq) \) be a strictly ordered set and \(\{A_\alpha|\alpha \in I\} \) a family of NJ rings. Suppose that
(A_α, (φ_αβ)_{α≤β}) is a direct limit system over I and (A_α, (η_α)_{α∈I}) is a direct limit of the direct system. If φ_αβ : A_α → A_β is an isomorphism for all α ≤ β and η_α : A_α → A is a monomorphism for all α ∈ I, then the direct limit A = \lim_{α→} A_α is also NJ.

Proof Note that since A is a direct limit of \{A_α|α ∈ I\}, we have A = \bigcup_{α∈I} \text{Im}η_α. Let a ∈ N(A) ⊆ A = \bigcup_{α∈I} \text{Im}η_α. Then there exists a positive integer n such that a^n = 0 and there is a_α ∈ A_α such that η_α(a_α) = a.

Hence, we can obtain 0 = a^n = (η_α(a_α))^n = η_α(a_α^n). Since η_α is a monomorphism, we have a_α^n = 0 and so a_α ∈ N(A_α) = J(A_α). For any r ∈ A, there exists r_β ∈ A_β such that η_β(r_β) = r. Next we claim that ar is a quasi-regular element in A. For α and β, we can find k ∈ I such that α ≤ k and β ≤ k because I is a direct set. Then a and r can be expressed by a = η_α(a_α) = η_κφ_αk(a_κ) and r = η_β(r_β) = η_κφ_βk(r_κ). Since a_α ∈ N(A_α) and η_κ is monomorphism, we can imply φ_αk(a_κ) ∈ N(A_k) = J(A_k) and φ_βk(r_κ) ∈ A_k. Thus, φ_αk(a_κ)φ_βk(r_κ) is a quasi-regular element in A_k. That is, there exists b_k ∈ A_k such that φ_αk(a_κ)φ_βk(r_κ) + b_k + φ_αk(a_κ)φ_βk(r_κ)b_k = 0. Moreover, η_κφ_αk(a_κ)η_κφ_βk(r_κ) + η_κφ_αk(a_κ)η_κφ_βk(r_κ)η_κ(b_κ) = 0 and so ar + η_κ(b_κ) + arr_κ(b_κ) = 0. This implies that ar is quasi-regular in A and so a ∈ J(A). It is proved that N(A) ⊆ J(A).

For the converse inclusion, suppose a ∈ J(A). Then there exists a_α ∈ A_α such that η_α(a_α) = a. Next we prove a_α ∈ J(A_α). For any r_α ∈ A_α, we can get that η_α(a_α r_α) = ar_α is quasi-regular in A and so aη_α(r_α) + b + aη_α(r_α)b = 0 for some b ∈ A. For the element b ∈ A, we can find b_β ∈ A_β such that η_β(b_β) = b. Then, by the condition, there is k ∈ I such that α ≤ k and β ≤ k and we can obtain η_α(a_α r_α) = η_κφ_αk(a_κ r_α) and η_β(b_β) = η_κφ_βk(b_β). Since η_α(a_α r_α) + η_κφ_αk(a_κ r_α)b = 0, we have the equation η_κφ_αk(a_κ r_α) + η_κφ_αk(a_κ r_α)η_κφ_αk(b_β) = 0 and φ_αk(a_κ r_α) + φ_αk(b_β) = φ_αk(a_κ r_α)φ_αk(b_β) = 0. Because I is a strictly ordered set, we have the following two cases:

If β ≤ α ≤ k, then φ_βk = φ_αkφ_βα. By the fact that φ_αk is isomorphism, we have a_α r_α + φ_βα(b_β) + a_α r_α φ_βα(b_β) = 0. Hence, a_α ∈ J(A_α) because of φ_βα(b_β) ∈ A_α.

If α ≤ β ≤ k, then φ_αβ = φ_βkφ_αβ. Similarly, we have φ_αβ(a_α r_α) + b_β + φ_αβ(a_α r_α)b_β = 0. Since φ_αβ is isomorphism, it implies that a_α r_α + φ_αβ^{-1}(b_β) + a_α r_α φ_αβ^{-1}(b_β) = 0, so a_α ∈ J(A_α) by φ_αβ^{-1}(b_β) ∈ A_α.

According to the above cases, we always have a_α ∈ J(A_α) = N(A_α). Then there exists a positive integer n such that a_α^n = 0. It is further implied that a^n = (η_α(a_α))^n = η_α(a_α^n) = 0 and so a ∈ N(A). This proves that J(A) ⊆ N(A). Therefore, A = \lim_{α→} A_α is NJ.

In the following, we study the polynomial extension of NJ rings including the polynomial ring R[x], the skew polynomial ring R[x; α], and the differential polynomial ring R[x; δ] of a ring R.

Recall that a ring R is Armendariz if f(x)g(x) = 0 for any f(x) = \sum_{i=0}^n a_ix^i, g(x) = \sum_{j=0}^m b_jx^j ∈ R[x], then a_ib_j = 0 for any i, j. Since there is an Armendariz ring such that it is not feckly Armendariz by Example 1.2 of [14], it is also not NJ. Conversely, we can also find an NJ ring such that it is not Armendariz by Example 1.7 of [14]. Therefore, there is no relationship between Armendariz rings and NJ rings.

Lemma 3.7 (1), Theorem 1 J(R[x]) = N[x] for a ring R, where N = J(R[x]) \cap R is a nil ideal containing the locally nilpotent radical L(R) of R.
Proposition 3.8 (1) If \(R \) is a weakly 2-primal ring, then \(R[x] \) is NJ.

(2) Let \(R \) be an Armendariz ring. If \(R \) is an NJ ring, then \(R[x] \) is also NJ.

(3) Let \(J(R) \) be a nil ideal. If \(R[x] \) is an NJ ring, then \(R \) is also NJ.

Proof (1) If \(R \) is a weakly 2-primal ring, then \(R[x] \) is also weakly 2-primal and \(N(R[x]) = N(R)[x] \) by Theorem 3.1 and Corollary 2.3 of [24]. Hence, we have \(N(R[x]) = L(R[x]) \subseteq J(R[x]) = (J(R[x]) \cap R)[x] \subseteq N^*(R)[x] = N(R)[x] = N(R[x]) \) by Lemma 3.7. Therefore, \(R[x] \) is NJ.

(2) Note that if \(R \) is an Armendariz ring, then we have \(J(R[x]) = N^*(R[x]) = N^*(R)[x] \) by Theorem 1.3 of [14] and \(N(R[x]) = N(R)[x] \) by Lemma 2.6 and Lemma 5.1 of [3]. Moreover, we can imply \(J(R[x]) = N^*(R[x]) = N^*(R)[x] = N(R)[x] = N(R[x]) \) since \(R \) is NJ.

(3) Since \(R[x] \) is an NJ ring, \(R[x] \) is an NI ring. Thus, it implies that \(R \) is NJ by Proposition 2.4 (2) of [12]. Therefore, \(R \) is NJ by Proposition 2.3.

Let \(\alpha \) be an endomorphism of \(R \). We denote by \(R[x; \alpha] \) the skew polynomial ring whose elements are the polynomials over \(R \), the addition is defined as usual, and the multiplication is subject to the reaction \(xr = \alpha(r)x \) for any \(r \in R \). According to Annin [2], a ring \(R \) is said to be \(\alpha \)-compatible if for each \(a, b \in R \), \(ab = 0 \Leftrightarrow a\alpha(b) = 0 \). The work in [18] called a ring \(R \) nil-semicommutative if for any \(a, b \in \text{nil}(R) \), \(ab = 0 \) implies \(aRb = 0 \). In [4], an automorphism \(\alpha \) of \(R \) is said to be of locally finite order if for every \(r \in R \) there exists integer \(n(r) \geq 1 \) such that \(\alpha^n(r) = r \).

Lemma 3.9 (1) [4], Theorem 3.1) Let \(R \) be a ring and \(\alpha \) an automorphism of \(R \). Then \(J(R[x; \alpha]) = I \cap J(R) + I_0[x; \alpha] \), where \(I = \{ r \in R | rx \in J(R[x; \alpha]) \} \) and \(I_0[x; \alpha] = \{ \sum_{i=1}^{n} r_i x^i | r_i \in I, n \in \mathbb{N} \} \).

(2) (4), Corollary 3.3) If \(\alpha \) is an automorphism of \(R \) of locally finite order and \(J(R) \) is locally nilpotent, then \(J(R[x; \alpha]) = J(R)[x; \alpha] \).

Theorem 3.10 (1) Let \(R \) be a ring and \(\alpha \) an automorphism of \(R \). If \(R \) is a weakly 2-primal \(\alpha \)-compatible ring, then \(R[x; \alpha] \) is NJ.

(2) Let \(\alpha \) be an automorphism of \(R \) of locally finite order and \(J(R) \) locally nilpotent. Then we have the following:

(i) If \(R \) is a nil-semicommutative \(\alpha \)-compatible NJ ring, then \(R[x; \alpha] \) is NJ;

(ii) If \(R[x; \alpha] \) is NJ, then \(R \) is also NJ.

Proof (1) Suppose that \(R \) is a weakly 2-primal \(\alpha \)-compatible ring. By Theorem 3.1 and Corollary 2.1 of [24], \(R[x; \alpha] \) is a weakly 2-primal ring and \(N(R[x; \alpha]) = N(R)[x; \alpha] \). Then we have \(N(R[x; \alpha]) = L(R[x; \alpha]) \subseteq J(R[x; \alpha]) \). According to Lemma 3.9 (1), \(J(R[x; \alpha]) = I \cap J(R) + I_0[x; \alpha] \), where \(I = \{ r \in R | rx \in J(R[x; \alpha]) \} \)

and \(I_0[x; \alpha] = \{ \sum_{i=1}^{n} r_i x^i | r_i \in I, n \in \mathbb{N} \} \), and in the following, we prove that \(J(R[x; \alpha]) \subseteq N(R)[x; \alpha] \). For any \(f(x) = \sum_{i=0}^{n} a_i x^i \in J(R[x; \alpha]) \), then \(a_0 \in I \cap J(R) \) and \(a_1 x + a_2 x^2 + \cdots + a_n x^n \in I_0[x; \alpha] \).

Further, we can imply \(a_i \in I \) for all \(i \geq 0 \). For every \(i \geq 0 \), we have \(a_i x \in J(R[x; \alpha]) \). There exists \(g_i(x) = \sum_{j=0}^{m} b_{ij} x^j \in R[x\alpha] \) such that \(a_i x + g_i(x) + a_i x g_i(x) = 0 \). We can obtain the following equations:
\(b_{00} = 0, \ a_i + b_{i1} + a_i \alpha(b_{00}) = 0, \ b_{i2} + a_i \alpha(b_{i1}) = 0, \ b_{i3} + a_i \alpha(b_{i2}) = 0, \ \cdots, \ b_{im} + a_i \alpha(b_{i(m-1)}) = 0, \) and \(a_i \alpha(b_{im}) = 0. \) Because \(b_{00} = 0, \) the equation \(a_i + b_{i1} + a_i \alpha(b_{00}) = 0 \) can become \(b_{i1} = -a_i. \) We plug this into the equation \(b_{i2} + a_i \alpha(b_{i1}) = 0, \) and then it becomes \(b_{i2} = a_i \alpha(a_i). \) We also substitute it into the equation \(b_{i3} + a_i \alpha(b_{i2}) = 0, \) and similarly, it implies \(b_{i3} = -a_i \alpha(a_i)^2(a_i). \) Continuing this progress, for the equation \(b_{im} + a_i \alpha(b_{i(m-1)}) = 0, \) we have \(b_{im} = (-1)^m a_i \alpha(a_i) a^2(a_i) \cdots a^{m-1}(a_i). \) Then the equation \(a_i \alpha(b_{im}) = 0 \) can become \(a_i \alpha(a_i) a^2(a_i) \cdots a^{m}(a_i) = 0. \) Thus, \(a^{m+1} = 0 \) since \(R \) is \(\alpha \)-compatible. Therefore, \(a_i \in N(R) \) and so \(f(x) \in N(R)[x; \alpha] = N(R)[x; \alpha]. \) We prove that \(J(R[x; \alpha]) \subseteq N(R[x; \alpha]) \) and \(R[x; \alpha] \) is NJ.

(2)(ii) By Lemma 3.9 (2) and Theorem 2.5 of [23], we have \(J(R[x; \alpha]) = J(R)[x; \alpha] = N(R)[x; \alpha]. \) Therefore, \(R[x; \alpha] \) is NJ.

(ii) Clearly, \(J(R) \subseteq N(R). \) For any \(a \in N(R), \) then \(a \in N(R[x; \alpha]). \) Since \(N(R[x; \alpha]) = J(R[x; \alpha]), \) we have \(a \in J(R[x; \alpha]) = J(R)[x; \alpha]. \) Hence, \(N(R) \subseteq J(R). \) Therefore, \(R \) is NJ. \(\square \)

Let \(\delta \) be a derivation of \(R; \) that is, \(\delta \) is an additive map such that \(\delta(ab) = \delta(a)b + a\delta(b), \) for \(a, b \in R. \) We denote by \(R[x; \delta] \) the differential polynomial ring whose elements are the polynomials over \(R, \) the addition is defined as usual, and the multiplication is subject to the reaction \(xr = rx + \delta(r) \) for any \(r \in R. \) According to Annin [2], \(R \) is called \(\delta \)-compatible if for each \(a, b \in R, \) \(ab = 0 \Rightarrow a\delta(b) = 0. \) A ring is called \textit{locally finite} if every finite subset in it generates a finite semigroup multiplicatively. In [20], a ring \(R \) is \(\delta \)-Armendariz if for each \(f(x) = \sum_{i=0}^{n} a_i x^i, \) \(g(x) = \sum_{j=0}^{m} b_j x^j \in R[x; \delta], \) \(f(x)g(x) = 0 \) implies \(a_ib_j = 0 \) for each \(0 \leq i \leq n, \) \(0 \leq j \leq m. \)

Lemma 3.11 ([9], Theorem 3.2) Let \(R \) be a ring and \(\delta \) a derivation of \(R. \) Then \(J(R[x; \delta]) = (J(R[x; \delta]) \cap R)[x; \delta]. \)

Theorem 3.12 Let \(R \) be a ring and \(\delta \) a derivation of \(R. \) Then we have the following:

(1) If \(R \) is a weakly 2-primal \(\delta \)-compatible ring, then \(R[x; \delta] \) is NJ;

(2) If \(R \) is a locally finite \(\delta \)-Armendariz ring, then \(R[x; \delta] \) is NJ;

(3) If \(R \) is a \(\delta \)-Armendariz NJ ring, then \(R[x; \delta] \) is NJ.

Proof (1) Since \(R \) is a weakly 2-primal \(\delta \)-compatible ring, by Theorem 3.1 and Corollary 2.1 of [24], \(R[x; \delta] \) is a weakly 2-primal ring and \(N(R[x; \delta]) = N(R)[x; \delta]. \) This implies that \(N(R[x; \delta]) = L(R[x; \delta]) \subseteq J(R[x; \delta]) = (J(R[x; \delta]) \cap R)[x; \delta] \) by Lemma 3.11. Next we claim that if \(R \) is \(\delta \)-compatible, then \(J(R[x; \delta]) \cap R \) is a nil ideal. For any \(a \in J(R[x; \delta]) \cap R, \) then \(1 - ax \in U(R[x; \delta]). \) There exists \(f(x) = \sum_{i=0}^{n} a_i x^i \in R[x; \delta] \) such that \((1 - ax)f(x) = 1.\) It implies the following equations: \(a_0 - a\delta(a_0) = 1, \) \(a_1 - a a_0 - a\delta(a_1) = 0, \) \(a_2 - a a_1 - a\delta(a_2) = 0, \) \(\cdots, \) \(a_{n-1} - a a_{n-1} - a\delta(a_{n-1}) = 0, \) \(a_n - a a_{n-1} - a\delta(a_n) = 0, \) and \(a a_n = 0. \) Since \(a a_n = 0 \) and \(R \) is \(\delta \)-compatible, we get \(a\delta(a_n) = 0 \) and so \(a_n = a a_{n-1}. \) Hence, \(a^2 a_{n-1} = aa_{n-1} = 0 \) and \(a^2\delta(a_{n-1}) = 0. \) Thus, \(a a_{n-1} = a^2 a_{n-2} \) and so \(a^3 a_{n-2} = a^2 a_{n-1} = 0. \) Continuing this progress, we can obtain \(a^n a_1 = 0. \) Moreover, since \(a_1 - a a_0 - a\delta(a_1) = 0, \) we have \(a^{n-1} a_1 = a^n a_0 \) and \(a^{n+1} a_0 = a^n a_1 = 0, \) so \(a^{n+1} \delta(a_0) = 0. \) Hence, \(a^n a_0 = a^n \) and \(a^{n+1} a_0 = a^{n+1} a_0 = 0. \) Therefore, \(a \in N(R) \) and \(J(R[x; \delta]) \cap R \) is nil. Moreover, we have \(N(R[x; \delta]) = L(R[x; \delta]) \subseteq J(R[x; \delta]) = (J(R[x; \delta]) \cap R)[x; \delta] \subseteq N(R)[x; \delta] \subseteq N(R)[x; \delta] = N(R[x; \delta]). \) Hence, \(R[x; \delta] \) is NJ.

(2) By Corollary 3.15 of [20], we have \(J(R[x; \delta]) = N(R[x; \delta]). \) Hence, \(R[x; \delta] \) is NJ.
(3) Since \(R \) is a \(\delta \)-Armendariz ring, by Corollary 3.4 of [20], we have \(J(R[x; \delta]) = N^*(R[x; \delta]) \subseteq N(R[x; \delta]) \). On the other hand, according to Proposition 2.9 of [20], \(N(R[x; \delta]) \subseteq N(R[x; \delta] = N^*(R[x; \delta]) \subseteq J(R[x; \delta]) \). Hence, \(R[x; \delta] \) is NJ.

\[\square \]

4. Topological conditions for NJ rings

In [12], a ring \(R \) is called weakly pm if every strongly prime ideal is contained in a unique maximal ideal in it. They also showed that if \(R \) is an NI ring, then \(R \) is weakly pm if and only if \(SSpec(R) \) is a normal space if and only if \(Max(R) \) is a retract of \(SSpec(R) \), where \(SSpec(R) \) is the space of all strongly prime ideals of \(R \) and \(Max(R) \) is the subspace of all maximal ideals of \(R \). In this section, we will apply the topological methods of Sun [22] and Hwang et al. [12] to analyze these conditions for NJ rings relating to the space of J-prime ideals in place of \(SSpec(R) \).

In [10], an ideal \(I \) of \(R \) is called J-prime if \(I \) is a prime ideal and \(I \) is an intersection of primitive ideals (equivalently, \(J(R/I) = 0 \)). Clearly, every maximal ideal is primitive and every primitive ideal is J-prime. We write \(JSpec(R) \) for the space of all J-prime ideals of \(R \) and denote the lattice of all ideals of \(R \) by \(Idl(R) \). Let \(A \) be a subset of a ring \(R \). Define \(D(A) = \{ J \in JSpec(R) | A \not\subseteq P \} \) and \(S(A) = \cap \{ P \in JSpec(R) | A \subseteq P \} \).

It is well known that the following hold.

Lemma 4.1 Let \(R \) be a ring and \(A \) be a subset of \(R \).

1. \(D(A) = \bigcup_{a \in A} D(a) = D(S(A)) \);
2. \(\bigcup_{i \in I} D(A_i) = D(\sum_{i \in I} A_i) \), where \(A_i \) is a subset of \(R \) containing 0 for all \(i \in I \);
3. \(D(I) \cap D(J) = D(I \cap J) = D(IJ) \) for ideals \(I, J \) of \(R \);
4. \(JSpec(R), \{ D(I)|I \in R \} \) is a topological space with a base \(\{ D(a)|a \in R \} \);
5. \(S(I)S(J) \subseteq S(IJ) = S(I) \cap S(J) \) for ideals \(I, J \) of \(R \).

Lemma 4.2 (1) If \(R \) is an NJ ring, then \(D(I) \cap D(J) = \emptyset \) if and only if \(IJ \subseteq J(R) \) for ideals \(I, J \) in \(R \);

(2) If \(F \) is a closed set and \(D(K) \) is an open set in \(JSpec(R) \) satisfying \(F \cap Max(R) \subseteq D(K) \), then \(F \subseteq D(K) \).

Proof

(1) Let \(D(I) \cap D(J) = \emptyset \). By Lemma 4.1 (3), we have \(D(IJ) = \emptyset \). That is, for any \(P \in JSpec(R), IJ \subseteq P \). Thus, \(IJ \subseteq \cap \{ P | P \in JSpec(R) \} \). Since every primitive ideal is J-prime, we can get \(IJ \subseteq \cap \{ P | P \in JSpec(R) \} \subseteq \cap \{ I \} \) is a primitive ideal of \(R \} = J(R) \). Let \(IJ \subseteq J(R) \). Since every J-prime ideal is strongly prime and \(R \) is NJ, we have \(N^*(R) = \cap \{ P | P \in SSpec(R) \} \subseteq \cap \{ P | P \in JSpec(R) \} \subseteq J(R) = N(R) = N^*(R) \) and so \(J(R) = \cap \{ P | P \in JSpec(R) \} \). For any \(P \in JSpec(R) \), we have \(IJ \subseteq P \). Thus, \(D(I) \cap D(J) = \emptyset \).

(2) Suppose that \(F \not\subseteq D(K) \). Then there exists a J-prime ideal \(P \in JSpec(R) \) such that \(P \in F \), but \(P \notin D(K) \) and so \(K \subseteq P \). Since \(F \) is a closed set in \(JSpec(R) \), we can find an ideal \(L \) of \(R \) such that \(F = JSpec(R) \setminus D(L) \). Therefore, \(P \notin D(L) \) and so \(L \subseteq P \). Moreover, \(K + L \subseteq P \). For any maximal ideal \(M \) containing \(P \), we have \(K + L \subseteq M \). Hence, \(K \subseteq M \) and \(L \subseteq M \). Since every maximal ideal is primitive, we can get \(M \in JSpec(R) \) and \(M \notin D(L) \). Thus, \(M \in F \cap Max(R) \subseteq D(K) \) and so \(K \not\subseteq M \), a contradiction.

\[\square \]
Lemma 4.3 (1) J-$\text{Spec}(R)$ is a compact space;

(2) If J-$\text{Spec}(R)$ is a normal space, then $Max(R)$ is a Hausdorff space;

(3) Let R be an NJ ring and $J(R) = BM(R)$. If $Max(R)$ is a Hausdorff space, then J-$\text{Spec}(R)$ is a normal space, where $BM(R)$ is the Brown–McCoy radical of R.

Proof (1) Let $\{U_i|i \in \Omega\}$ be an open cover of the topological space J-$\text{Spec}(R)$. Then we have J-$\text{Spec}(R) = \bigcup_{i \in \Omega} U_i$. Hence, there exists a subset A of R such that $\bigcup_{i \in \Omega} U_i = \bigcup_{a \in A} D(a)$. Take $I = (A) = RAR$. Next we claim that $\bigcup_{a \in A} D(a) = \bigcup_{b \in B} D(b)$. For any $P \subseteq \bigcup_{a \in A} D(a)$, there exists $a \in A$ such that $P \subseteq D(a)$ and so $a \notin P$. Thus, $I \notin P$ by $a \in I$. Therefore, $P \subseteq D(I) = \bigcup_{b \in B} D(b)$ and so $\bigcup_{a \in A} D(a) \subseteq \bigcup_{b \in B} D(b)$. For any $P \subseteq \bigcup_{b \in B} D(b)$, we have $a' \notin P$ for some $a' \in I$. Assume that $P \notin \bigcup_{a \in A} D(a)$. Then, for each $a \in A$, we have $a \notin P$, a contradiction.

Therefore, $\bigcup_{a \in A} D(a) = \bigcup_{b \in B} D(b) = D(I)$. This implies that J-$\text{Spec}(R) = \bigcup_{i \in \Omega} U_i = \bigcup_{a \in A} D(a) = \bigcup_{b \in B} D(b) = D(I)$. Hence, $I = (A) = R$. There exist $n \in \mathbb{N}$, $r_i, s_i \in R$, and $a_i \in A$ such that $\sum_{i=1}^{n} r_i a_i s_i = 1$. It implies that $(a_1, a_2, \ldots, a_n) = R$ and so $\bigcup_{i=1}^{n} D(a_i) = D((a_1, a_2, \ldots, a_n)) = D(R) = J$-$\text{Spec}(R)$. For every $1 \leq i \leq n$, we take $U_i \subseteq \{U_i|i \in \Omega\}$ such that U_i contains $D(a_i)$. Then $\bigcup_{i=1}^{n} U_i = J$-$\text{Spec}(R)$. Therefore, J-$\text{Spec}(R)$ is a compact space.

(2) Let $M_1, M_2 \in Max(R)$ with $M_1 \neq M_2$. Then $M_1, M_2 \in J$-$\text{Spec}(R)$ and $M_1 \notin D(M_2), M_2 \notin D(M_2)$. Hence, $\{M_1\} \subseteq J$-$\text{Spec}(R)\setminus D(M_1)$ and $\{M_2\} \subseteq J$-$\text{Spec}(R)\setminus D(M_2)$. For any $P \subseteq J$-$\text{Spec}(R)\setminus D(M_1)$, we have $M_1 \subseteq P$. Since M_1 is a maximal ideal, we can obtain $M_1 = P$ and so $P \in \{M_1\}$. Thus, $\{M_1\} \subseteq J$-$\text{Spec}(R)\setminus D(M_1)$. Similarly, we also have $\{M_2\} \subseteq J$-$\text{Spec}(R)\setminus D(M_2)$. That is, $\{M_1\}$ and $\{M_2\}$ are closed sets in J-$\text{Spec}(R)$.

Because J-$\text{Spec}(R)$ is a normal space, there exist open neighborhoods $D(I)$ and $D(J)$ such that $\{M_1\} \subseteq D(I)$, $\{M_2\} \subseteq D(J)$, and $D(I) \cap D(J) = \emptyset$. Hence, $M_1 \in D(I) \cap Max(R)$, $M_2 \in D(J) \cap Max(R)$, and $(D(I) \cap Max(R)) \cap (M_2 \in D(J) \cap Max(R)) = \emptyset$. Therefore, $Max(R)$ is Hausdorff.

(3) Let F_1 and F_2 be closed sets in J-$\text{Spec}(R)$ and $F_1 \cap F_2 = \emptyset$. Then $F_1 \cap Max(R)$ and $F_2 \cap Max(R)$ are closed sets in $Max(R)$ and $(F_1 \cap Max(R)) \cap (F_2 \cap Max(R)) = \emptyset$. Since $Max(R)$ is a compact Hausdorff space, $Max(R)$ is a normal space. There exist two open neighborhoods A, B in $Max(R)$ such that $F_1 \cap Max(R) \subseteq A$, $F_2 \cap Max(R) \subseteq B$, and $A \cap B = \emptyset$. For A and B, we can find ideals I and J such that $A = D(I) \cap Max(R)$ and $B = D(J) \cap Max(R)$. At the same time, we have $\emptyset = A \cap B = (D(I) \cap Max(R)) \cap (D(J) \cap Max(R)) = D(I) \cap D(J) \cap Max(R) = D(IJ) \cap Max(R)$. For any $M \in Max(R)$, it can imply $IJ \subseteq M$. Thus, $IJ \subseteq BM(R) = J(R)$. By Lemma 4.2 (1), we can obtain $D(I) \cap D(J) = \emptyset$. Since $F_1 \cap Max(R) \subseteq A = D(I) \cap Max(R)$ and $F_2 \cap Max(R) \subseteq B = D(J) \cap Max(R)$, we have $F_1 \cap Max(R) \subseteq D(I)$ and $F_2 \cap Max(R) \subseteq D(J)$. Moreover, $F_1 \subseteq D(I)$ and $F_2 \subseteq D(J)$ by Lemma 4.2 (2). Therefore, J-$\text{Spec}(R)$ is normal.

According to Koh [13], a ring R is strongly harmonic provided that for each pair of distinct maximal ideals M_1, M_2 there are ideals I_1, I_2 such that $I_1 \notin M_1, I_2 \notin M_2$, and $I_1I_2 = 0$. Obviously, if R is a strongly harmonic ring, then $Max(R)$ is a Hausdorff space. Associated to Lemma 4.3 (2), we will prove the following proposition. □
Proposition 4.4 If R is a strongly harmonic ring, then J-$\text{Spec}(R)$ is a normal space.

Proof Let F_1 and F_2 be closed sets in J-$\text{Spec}(R)$ with $F_1 \cap F_2 = \emptyset$. Then $F_1 \cap \text{Max}(R)$ and $F_2 \cap \text{Max}(R)$ are closed sets in $\text{Max}(R)$ and $(F_1 \cap \text{Max}(R)) \cap (F_2 \cap \text{Max}(R)) = \emptyset$. Let $M \in F_1 \cap \text{Max}(R)$. Then $M \notin F_2 \cap \text{Max}(R)$. It is well known that every closed subset in a compact space is a compact subset. That is, $F_1 \cap \text{Max}(R)$ and $F_2 \cap \text{Max}(R)$ are both compact subsets in $\text{Max}(R)$. According to Theorem 3.2 of [13], we can find ideals I_M and J_M such that $M \in D(I_M)$, $F_2 \cap \text{Max}(R) \subseteq D(J_M)$, and $I_MJ_M = 0$. Repeating the above procedure and by the compactness of $F_1 \cap \text{Max}(R)$, we can find a finite number of ideals $I_1, I_2, \ldots, I_n, J_1, J_2, \ldots, J_n$ such that $F_1 \cap \text{Max}(R) \subseteq \bigcup_{i=1}^n D(I_i)$, $F_2 \cap \text{Max}(R) \subseteq \bigcap_{i=1}^n D(J_i) = D(J_1J_2 \cdots J_n)$, and $I_iJ_i = 0$. Taking $I = \bigcap_{i=1}^n I_i$ and $J = J_1J_2 \cdots J_n$, then $IJ = 0$. By Lemma 4.2 (2), we have $F_1 \subseteq D(I)$, $F_2 \subseteq D(J)$ and $D(I) \cap D(J) = D(IJ) = \emptyset$. Therefore, J-$\text{Spec}(R)$ is normal. □

In Sun’s work in [22], $\text{Idl}(R)$ is normal if for each pair $I_1, I_2 \in \text{Idl}(R)$ with $I_1 + I_2 = R$, there are ideals J_1, J_2 such that $I_1 + J_1 = R = I_2 + J_2$ and $J_1J_2 = 0$.

Proposition 4.5 Let R be an NJ ring. Then we have the following:

(1) J-$\text{Spec}(R)$ is a normal space if and only if for each pair $I_1, I_2 \in \text{Idl}(R)$ with $I_1 + I_2 = R$, there are ideals J_1, J_2 such that $I_1 + J_1 = R = I_2 + J_2$ and $S(J_1)S(J_2) \subseteq J(R)$;

(2) $\text{Idl}(R)$ is normal, and then J-$\text{Spec}(R)$ is a normal space.

Proof (1) For the sufficiency, let F_1 and F_2 be closed sets in J-$\text{Spec}(R)$ with $F_1 \cap F_2 = \emptyset$. Then there exist $I_1, I_2 \in \text{Idl}(R)$ such that $F_1 = J$-$\text{Spec}(R) \setminus D(I_1)$ and $F_2 = J$-$\text{Spec}(R) \setminus D(I_2)$. Since $F_1 \cap F_2 = \emptyset$, we have $D(I_1) \cup D(I_2) = J$-$\text{Spec}(R)$ and so $I_1 + I_2 = R$. By the hypothesis, there are ideals J_1, J_2 such that $I_1 + J_1 = R = I_2 + J_2$ and $J_1J_2 = 0$. Hence, J-$\text{Spec}(R) = D(R) = D(I_1 + J_1) = D(I_1) \cup D(J_1)$ and J-$\text{Spec}(R) = D(R) = D(I_2 + J_2) = D(I_2) \cup D(J_2)$. Moreover, we can get $F_1 \subseteq D(J_1)$, $F_2 \subseteq D(J_2)$ and $D(S(J_1)) = D(J_1)$, $D(S(J_2)) = D(J_2)$ by Lemma 4.1 (1). This implies that $D(J_1) \cap D(J_2) = D(S(J_1)) \cap D(S(J_2)) = D(S(J_1)S(J_2))$. Since $S(J_1)S(J_2) \subseteq J(R)$, we have $D(J_1) \cap D(J_2) = D(S(J_1)S(J_2)) = \emptyset$. Therefore, J-$\text{Spec}(R)$ is normal.

For the necessity, assume that $I_1, I_2 \in \text{Idl}(R)$ with $I_1 + I_2 = R$. Let $F_1 = J$-$\text{Spec}(R) \setminus D(I_1)$ and $F_2 = J$-$\text{Spec}(R) \setminus D(I_2)$. Then F_1 and F_2 are closed sets in J-$\text{Spec}(R)$ and $D(I_1) \cup D(I_2) = D(I_1 + I_2) = D(R) = J$-$\text{Spec}(R)$. Hence, $F_1 \cap F_2 = J$-$\text{Spec}(R) \setminus (D(I_1) \cup D(I_2)) = \emptyset$. Since J-$\text{Spec}(R)$ is normal, there exist $J_1, J_2 \in \text{Idl}(R)$ such that $F_1 \subseteq D(J_1)$, $F_2 \subseteq D(J_2)$, and $D(J_1) \cap D(J_2) = \emptyset$. Because J-$\text{Spec}(R) = F_1 \cup D(I_1) \subseteq D(J_1) \cup D(I_1) = D(J_1 + I_1) \subseteq J$-$\text{Spec}(R)$, we have $D(J_1 + I_1) = J$-$\text{Spec}(R)$ and so $J_1 + I_1 = R$. Similarly, we also conclude $J_2 + I_2 = R$. R is NJ and $D(J_1) \cap D(J_2) = \emptyset$, so, by Lemma 4.2 (1), we can obtain $J_1J_2 \subseteq J(R)$. On the other hand, if R is NJ, we have $J(R) = \{P | P \in J$-$\text{Spec}(R)\}$. Hence, $S(J_1)S(J_2) \subseteq S(J_1J_2) \subseteq J(R)$ by Lemma 4.1 (5).

(2) Let $\text{Idl}(R)$ be normal. Then for each pair $I_1, I_2 \in \text{Idl}(R)$ with $I_1 + I_2 = R$, there are ideals J_1, J_2 such that $I_1 + J_1 = R = I_2 + J_2$ and $J_1J_2 = 0$. Hence, $S(J_1)S(J_2) \subseteq S(J_1J_2) = S(0) = \{P | P \in J$-$\text{Spec}(R)\} = J(R)$ by Lemma 4.1 (5). Therefore, according to (1), we can prove that J-$\text{Spec}(R)$ is normal. □

In [22], a ring R is called pm if every prime ideal is contained in a unique maximal ideal in it. Hwang et
al. in [12] extended to weakly pm. In this section, we call a ring R J-pm if every J-prime ideal is contained in a unique maximal ideal in it. Clearly, every pm ring is weakly pm and every weakly pm is J-pm.

Proposition 4.6 If $\text{Max}(R)$ is a retract of J-$\text{Spec}(R)$, then R is J-pm.

Proof For any $P \in J$-$\text{Spec}(R)$, let $\mu : J$-$\text{Spec}(R) \to \text{Max}(R)$ be a continuous retraction with $\mu(P) = M$. From the proof of Lemma 4.3 (2), we can obtain that $\{M\}$ is a closed set in $\text{Max}(R)$, so $\mu^{-1}(\{M\})$ is also a closed set in J-$\text{Spec}(R)$. By Observation 1.4 of [22], the closed set $\mu^{-1}(\{M\})$ contains the closure of $\{P\}$, and so any maximal ideal M' containing P. Moreover, we have $M' = \mu(M') = M$. Therefore, R is J-pm. □

Lemma 4.7 Let R be an NJ ring and X be a multiplicative monoid in $R\setminus 0$. Suppose that $P \subseteq J(R)$ is an ideal of R maximal with respect to the property $P \cap X = \emptyset$. Then P is J-prime.

Proof Let A, B be ideals of R with $AB \subseteq P$. Since $P \cap X = \emptyset$, we have $AB \cap X = \emptyset$. Assume that there exist $x \in A \cap X$ and $y \in B \cap X$. Then we can get $xy \in AB \cap X$, a contradiction. Therefore, P is a prime ideal. Since R is NJ and $P \subseteq J(R)$, we have $J(R/P) = N(R/P) = N^*(R/P)$ by Proposition 2.12 (2). According to Lemma 2.2 of [12], we can obtain $J(R/P) = 0$. Thus, P is J-prime. □

Proposition 4.8 If R is a NJ J-pm ring, then $\text{Max}(R)$ is a Hausdorff space.

Proof We apply the proof of ([12], Lemma 3.4) and ([22], Lemma 2.1). Let M_1, $M_2 \in \text{Max}(R)$ with $M_1 \neq M_2$. Consider the multiplicative subset $S = \{a_1b_1a_2b_2\cdots a_nb_n | a_i \in M_1, b_i \in M_2, i = 1, 2, \ldots, n, n \in \mathbb{N}\}$. If $0 \notin S$, then there would be a J-prime ideal $P \subseteq J(R)$ such that $P \cap S = \emptyset$ by Lemma 4.7. It implies $P \subseteq M_1$ and $P \subseteq M_2$, which is a contradiction because R is J-pm. Therefore, $0 \in S$ and there are $a_i \in M_1$, $b_i \in M_2$, and $n \in \mathbb{N}$ such that $a_1b_1a_2b_2\cdots a_nb_n = 0$. Then there are $c_i, d_i \in R$ such that $x_1 = a_1c_1 \cdots a_{n-1}c_{n-1}a_n \notin M_1$ and $x_2 = b_1d_1 \cdots b_{n-1}d_{n-1}b_n \notin M_2$. Otherwise, we have $a_1b_1 \cdots a_{n-1}b_{n-1}a_n \in M_1$ and so $(a_1b_1 \cdots a_{n-1}b_{n-1}a_n)b_n \notin S$, a contradiction. Since R is NJ, $R/J(R)$ is reduced. In $R/J(R)$, we have $a_1b_1a_2b_2\cdots a_nb_n = 0$. For any $r \in R$, we can imply $a_1b_1a_2b_2\cdots a_nb_n c_1c_2 \cdots c_{n-1}d_1d_2 \cdots d_{n-1} = 0$ and so $\frac{x_1}{x_2} = 0$. Thus, $x_1Rx_2 \subseteq J(R)$. In an NJ ring, $J(R) = \cap \{P | P \in J$-$\text{Spec}(R)\}$. That is, for any $P \in J$-$\text{Spec}(R)$, we have $x_1Rx_2 \subseteq P$. Assume that $D(x_1) \cap D(x_2) \neq \emptyset$. Then we can find $P \in D(x_1) \cap D(x_2)$ and so $x_1 \notin P$, $x_2 \notin P$. It implies $x_1Rx_2 \not\subseteq P$ because P is a prime ideal, a contraction. This proves that $D(x_1) \cap D(x_2) = \emptyset$. On the other hand, since $x_1 \in M_1$ and $x_2 \in M_2$, we have $M_1 \in D(x_1)$ and $M_2 \in D(x_2)$. Therefore, $\text{Max}(R)$ is Hausdorff.

Theorem 4.9 Let R be an NJ ring. Then the following are equivalent:

1. J-$\text{Spec}(R)$ is a normal space;
2. $\text{Max}(R)$ is a retract of J-$\text{Spec}(c)(R)$ and $\text{Max}(R)$ is a Hausdorff space.

Proof (1) ⇒ (2) If J-$\text{Spec}(R)$ is a normal space, then $\text{Max}(R)$ is a Hausdorff space by Lemma 4.3 (2). Next we only prove that $\text{Max}(R)$ is a retract of J-$\text{Spec}(R)$. For any $P \in J$-$\text{Spec}(R)$, we let $F_P = \{I | aR | I + P = R\}$. In the proof of Theorem 1.6 of [22], we know that F_P has the following properties:

(i) if $I_1 + I_2 \in F_P$, then either $I_1 \in F_P$ or $I_2 \in F_P$;

□
(ii) if $I \in F_P$, and $I \subseteq J$, then $J \in F_P$. Meanwhile, for each $I \triangleleft R$, we define $M_P = \sum\{ I \triangleleft [I \notin F_P] \}$. If $1 \in M_P$, then we have $\sum\{ I \triangleleft [I \notin F_P] \} = R$ and so $P + \sum\{ I \triangleleft [I \notin F_P] \} = R$. This implies $\sum\{ I \triangleleft [I \notin F_P] \} \in F_P$ and so $J \in F_P$ for each $J \in \{ I \triangleleft R | I \notin F_P \}$, a contradiction. Thus, $1 \notin M_P$. On the other hand, if $P \in F_P$, then we have $P + P = R$ and so $P = R$, a contradiction. Hence, $P \notin F_P$ and $P \subseteq M_P$. Assume that M_P is not a maximal ideal. There exists $M \in \text{Max}(R)$ with $M \neq R$ such that $M_P \subsetneq M$ and so $M \subsetneq M_P$. Then $M \in F_P$ and so $M + P = R$, which implies $M = M + M_P \supseteq M + P = R$, a contradiction. Therefore, M_P is a maximal ideal.

Now we define a map $\mu : J\text{-Spec}(R) \to \text{Max}(R)$ with $\mu(P) = M_P$ for each $P \in J\text{-Spec}(R)$. Obviously, when $P \in \text{Max}(R)$, $P \subseteq M_P$; on the other hand, for any $I \triangleleft R$ with $I \notin F_P$, then $I + P \neq R$. That is, if $P \in \text{Max}(R)$, then $P = M_P$.

Moreover, μ is extended from $1_{\text{Max}(R)} : \text{Max}(R) \to \text{Max}(R)$. Next we prove that μ is a continuous map. For any $I \triangleleft R$, $D(I) \cap \text{Max}(R)$ is an open set in $\text{Max}(R)$. We will claim that $\mu^{-1}(D(I) \cap \text{Max}(R)) = \{ P \in J\text{-Spec}(R) | \mu(P) \in D(I) \cap \text{Max}(R) \}$ is an open set in $J\text{-Spec}(R)$. For each $P \in \mu^{-1}(D(I) \cap \text{Max}(R))$, we have $\mu(P) \in D(I) \cap \text{Max}(R)$. That is, $P \subseteq D(I)$ and $P \subseteq \text{Max}(R)$. This implies $I \not\subseteq P$ and $I \subseteq F_P$, so we have $I + P = R$. By Lemma 4.5 (1), there exist ideals J_1, J_2 such that $I + J_1 = R = P + J_2$ and $S(J_1)S(J_2) \subseteq J(R)$. Since $R = P + J_2$, we can obtain $J_2 \not\subseteq P$ and so $P \in D(J_2)$. It can imply $\mu^{-1}(D(I) \cap \text{Max}(R)) \subseteq D(J_2)$. For the converse inclusion, if $P' \in D(J_2)$, then $J_2 \not\subseteq P'$ and so $S(J_2) \not\subseteq P'$ by $J_2 \not\subseteq S(J_2)$. Since $S(J_1)S(J_2) \subseteq J(R) \subseteq P'$ and P' is a prime ideal, we have $S(J_1) \subseteq P'$ and so $J_1 \subseteq P'$. Hence, we get $I + P' = R$ by $I + J_1 = R$. Thus, $I \in F_{P'}$ and $I \not\subseteq \mu(P') = M_{P'}$. Therefore, we can obtain $M_{P'} = \mu(P') \in D(I) \cap \text{Max}(R)$ and so $P' \in \mu^{-1}(D(I) \cap \text{Max}(R))$. That is, $\mu^{-1}(D(I) \cap \text{Max}(R)) = D(J_2)$. Moreover, $\mu^{-1}(D(I) \cap \text{Max}(R))$ is an open set.

(2) \Rightarrow (1) Let $\mu : J\text{-Spec}(R) \to \text{Max}(R)$ be a continuous retraction by the hypothesis. Suppose that F_1 and F_2 are closed sets in $J\text{-Spec}(R)$ with $F_1 \cap F_2 = \emptyset$. Then $F_1 \cap \text{Max}(R)$ and $F_2 \cap \text{Max}(R)$ are closed sets in $\text{Max}(R)$ and $(F_1 \cap \text{Max}(R)) \cap (F_2 \cap \text{Max}(R)) = \emptyset$. Since every compact Hausdorff space is normal, there are I, $J \triangleleft R$ such that $F_1 \cap \text{Max}(R) \subseteq D(I) \cap \text{Max}(R)$, $F_2 \cap \text{Max}(R) \subseteq D(J) \cap \text{Max}(R)$ and $(D(I) \cap \text{Max}(R)) \cap (D(J) \cap \text{Max}(R)) = \emptyset$. Because μ is continuous, $\mu^{-1}(D(I) \cap \text{Max}(R))$ and $\mu^{-1}(D(J) \cap \text{Max}(R))$ are open sets in $J\text{-Spec}(R)$. Assume that $\mu^{-1}(D(I) \cap \text{Max}(R)) \cap \mu^{-1}(D(J) \cap \text{Max}(R)) \neq \emptyset$. Then there exists $P \in \mu^{-1}(D(I) \cap \text{Max}(R)) \cap \mu^{-1}(D(J) \cap \text{Max}(R))$ and so $\mu(P) \in D(I) \cap D(J) \cap \text{Max}(R)$, a contradiction. Therefore, $\mu^{-1}(D(I) \cap \text{Max}(R)) \cap \mu^{-1}(D(J) \cap \text{Max}(R)) = \emptyset$. By Observation 1.4 of [22] and $F_1 \cap \text{Max}(R) \subseteq D(I) \cap \text{Max}(R)$, we have $F_1 = \mu^{-1}(F_1 \cap \text{Max}(R)) \subseteq \mu^{-1}(D(I) \cap \text{Max}(R))$. Similarly, we also have $F_2 \subseteq \mu^{-1}(D(J) \cap \text{Max}(R))$. Therefore, $J\text{-Spec}(R)$ is normal. \hfill \square

Theorem 4.10 Let R be an NJ ring. Then the following are equivalent:

1. R is J-pm;
2. $J\text{-Spec}(R)$ is a normal space;
3. $\text{Max}(R)$ is a retract of $J\text{-Spec}(R)$.

Proof (3) \Rightarrow (1) and (2) \Rightarrow (3) are proved by Proposition 4.6 and Theorem 4.9, respectively.

(1) \Rightarrow (2) If R is an NJ J-pm ring, then $\text{Max}(R)$ is a Hausdorff space by Proposition 4.8. According to Theorem 4.9, we only prove that $\text{Max}(R)$ is a retract of $J\text{-Spec}(R)$. Since R is J-pm, we can obtain a retraction $\mu : J\text{-Spec}(R) \to \text{Max}(R)$ by sending each J-prime ideal to the unique maximal ideal containing it. We only
prove that μ is continuous by showing that $\mu^{-1}(\mathfrak{F})$ is closed in J-$\text{Spec}(R)$ for a closed set \mathfrak{F} of $\text{Max}(R)$. In the following, we apply the proof of ([22], Theorem 2.2). Let $B = \bigcup\{M|M \in \mathfrak{F}\}$, $F = \bigcap\{M|M \in \mathfrak{F}\}$, and $I = \bigcap\{P \in J$-$\text{Spec}(R)|\mu(P) \in \mathfrak{F}\}$. We will claim that $\mu^{-1}(\mathfrak{F}) = J$-$\text{Spec}(R)$-$D(I)$. For each $P \in \mu^{-1}(\mathfrak{F})$, then $\mu(P) \in \mathfrak{F}$ and so $I \subseteq P$. Hence, we have $P \in J$-$\text{Spec}(R)$-$D(I)$. Therefore, $\mu^{-1}(\mathfrak{F}) \subseteq J$-$\text{Spec}(R)$-$D(I)$.

If $Q \in J$-$\text{Spec}(R)$ with $Q \subseteq B$, then clearly $Q + F \subseteq B$ and so there exists a maximal ideal M with $Q + F \subseteq M$. Since $F \subseteq M$ and \mathfrak{F} is a closed set, we have $M \in \mathfrak{F}$. Because R is J-pm, M is the unique maximal ideal containing Q.

For each $P \in J$-$\text{Spec}(R)$-$D(I)$, then we have $I \subseteq P$. Considering the multiplicative monoid $X = \{s_1t_1s_2t_2\cdots s_nt_n|s_i \notin B, t_i \notin P, i = 1,2,\ldots,n, n \in \mathbb{N}\}$ in Theorem 3.7 of [12]. Similarly, we also can prove that $0 \notin X$. Then there exists a J-prime ideal $Q \subseteq J(R)$ such that $Q \cap X = \emptyset$ by Lemma 4.7. Hence, we can obtain $Q \subseteq P \cap B$ and so $\mu(P) \in \mathfrak{F}$.

\section*{Acknowledgments}

This work was supported by the National Natural Science Foundation of China (11071097) and the Natural Science Foundation of the Jiangsu Higher Education Institutions (BK20181406).

\section*{References}