Dehydrated human amnion/chorion membrane allograft for preventing epidural fibrosis after laminectomy: an experimental rat model

Özhan Merzuk Uçkun1, Denizhan Divanhoğlu1, Rıfat Akdağ2, Güner Menekşe3, Ali Dalgıç1, Ahmet Deniz Belen1

1Department of Neurosurgery, University of Health Sciences, Ankara Numune Training and Research Hospital, Ankara, Turkey
2Department of Neurosurgery, University of Health Sciences, Bursa Yüksek İhtisas Training and Research Hospital, Bursa, Turkey
3Department of Neurosurgery, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey

ABSTRACT

Objectives: Post-laminectomy syndrome due to epidural fibrosis (EF) is a common cause of persistent low back pain after lumbar spinal surgery and is challenging for both surgeons and patients. The current experimental study aimed to investigate the effect of dehydrated human amnion/chorion membrane (dHACM) allograft for preventing EF formation following lumbar laminectomy.

Methods: Sixteen Sprague–Dawley rats equally divided into two groups underwent lumbar laminectomy. Group A, the control group, underwent lumbar laminectomy with standard closure. Group B, the experimental group, additionally received epidural dHACM allografts during the procedure. After 45 days of follow-up, the rats were sacrificed, and the harvested tissues were histopathologically evaluated for EF.

Results: Compared with Group A, Group B showed significantly less EF generation (p < 0.001), implying that dHACM allografts effectively prevent EF.

Conclusions: This study demonstrated that dHACM can effectively reduce EF formation after spinal laminectomy in rats.

Keywords: Epidural fibrosis, laminectomy, amnion membrane allograft

Failed back surgery syndrome (FBSS) is characterized by refractory back pain with or without lower extremity involvement, occurring after 5%-40% of lumbar disc surgeries [1-3]. Many factors, including inadequate surgical decompression, recurrent disc herniation, epidural fibrosis (EF), and spinal instability, contribute to the risk of FBSS. Of these known factors, EF occurs in 24% of patients with lumbar disc herniation, making it the most common cause of post-laminectomy syndrome [4]. Currently, there exists no known method with proven efficacy for reducing EF after its formation in such cases. Although wide epidural adhesions can be cleared and compressed nerve roots can be relaxed by a secondary surgery, adhesions may recur [5]. As a result, methods involving materials such as free and pedicled oil grafts, synthetic membranes, fibrin foam, gelatin, and dextran sulfate blends (implants containing adcon-I materials) have...
been explored for preventing EF formation [6-9]. Human amniotic membrane (HAM) is one of promising materials for preventing EF. EF formation after lumbar laminectomy is a multistage process involving the accumulation of extracellular matrix components such as collagen, fibronectin, and dermatan sulfate and the reduction of tissue cells [10]. HAM allografts may prevent this process by inhibiting vascularization and apoptosis in epithelial cells along with reducing inflammation [11, 12]. Various methods for processing HAM allografts have been developed, but their usage is associated with challenges such as damaged collagen construction, residual chemical agents, and blood-borne pathogen infections [13]. Recently, an allograft composed of dehydrated human amnion/chorion membrane (dHACM) (AmnioFix, MiMedx, Marietta, GA), which was processed gently for preserving the collagen matrix and its biological activities, was introduced in clinic practice [14]. The current study aimed to investigate if the dHACM is effective for preventing EF formation after experimental lumbar laminectomy.

METHODS

Sixteen adult, male Sprague-Dawley rats weighing between 300 and 350 grams were included in the study. All animals were housed in a suitable animal-care facility under veterinary supervision. During the experiment, until sacrifice, all of the subjects were followed in a good state of health without any complications such as wound, infection, hematoma, and cerebrospinal fluid fistula development. All experiments were approved by the Animal Experiments Ethics Committee. Sixteen subjects were equally distributed into two groups: Group A, control group, underwent lumbar laminectomy and Group B, treatment group, received epidural dHACM allografts following lumbar laminectomy. Prior to surgery, general anesthesia with intraperitoneal 60-mg/kg ketamine hydrochloride (Ketalar; Eczacıbaşı, Turkey) and 5-mg/kg xylazine (Rompun; Bayer, Turkey) was administered.

Surgical Technique

Thoracolumbar regions of the subjects were prepared, and the operation site was disinfected using iodine solution. A midline incision between T11 and sacrum was performed. Subsequent paraspinal muscle dissection was followed by T12 to L4 total laminectomies. Adequate care was taken during the entire procedure to protect the spinal cord.

For the subjects in Group A, a standard closure was performed using 0/3 silk sutures for the thoracolumbar fascia and 0/3 prolene for skin. For the subjects in Group B, epidural dHACM allografts were placed before performing the same standard closure.

All animals were housed in a stress-free animal-care facility at room temperature (25 ± 1 °C) with ad libitum access to food and water for 45 days until sacrifice using high dose ketamine hydrochloride.

Histopathologic Evaluation

Obtained tissue blocks of muscle, bone, epidural space, and spinal cord structures were sampled and fixed in formalin for histological examination. These samples were then immersed in 10% EDTA for decalcification. To investigate the presence of scar tissue and for microscopic examination, the blocks were stained with hematoxylin-eosin (HE) and Masson’s trichrome.

The grade of EF formation was evaluated by a blinded pathologist in accordance with the model recommended by He et al. [15] (Table 1). Figure 1 shows thin fibrous attachments between the dura mater and scar tissue (grade 1). The samples shown in Figures 2 and 3 demonstrate fibrosis of grade 2 and 3, respectively.

Statistical Analysis

Data were presented as mean ± standard deviation. Differences in histological findings among the two groups were evaluated using the Mann-Whitney U test. The level of statistical significance was set at $p < 0.05$.

Table 1. Grading extent of fibrous tissue

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No fibrosis on the dura mater</td>
</tr>
<tr>
<td>1</td>
<td>Thin fibrous bands between the dura mater and scar tissue</td>
</tr>
<tr>
<td>2</td>
<td>Fibrosis forms over less than two thirds of the laminectomy defect</td>
</tr>
<tr>
<td>3</td>
<td>Fibrosis extends over two thirds of the laminectomy defect or to the nerve root</td>
</tr>
</tbody>
</table>
RESULTS

The mean histopathological grade of EF was 2.87 ± 0.35 in Group A and 1.62 ± 0.34 in Group B (Table 2). The difference between the two groups was statistically significant ($p < 0.001$), indicating that EF formation was greater in the control group than in the dHACM allograft group. The dHACM graft was thus found to decrease EF formation significantly.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Mean ± SD</th>
<th>Median</th>
<th>Minimum–Maximum</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A Control (laminectomy)</td>
<td>2.87 ± 0.35</td>
<td>3.00</td>
<td>(2.0-3.0)</td>
<td><0.001**</td>
</tr>
<tr>
<td>Group B dHACM graft (Laminectomy + Graft)</td>
<td>1.62 ± 0.51</td>
<td>2.00</td>
<td>(1.0-2.0)</td>
<td></td>
</tr>
</tbody>
</table>

SD = Standard deviation, dHACM = Dehydrated human amnion/chorion membrane, The Mann-Whitney U test was used to compare values between groups. **$p < 0.01$.

Figure 1. An example of the thin fibrous attachments between the dura mater and scar tissue (grade 1). [HE ×100] MS: Medulla spinalis, D: Dura mater, F: Fibrosis

Figure 2. An example of fibrosis covering less than 2/3 of the laminectomy defect (grade 2). [Masson’s trichrome (MT), ×200]

Figure 3. An example of fibrosis covering more than 2/3 of the laminectomy defect (grade 3). [HE, ×300]
DISCUSSION

Epidural fibrosis around nerve roots and the dura mater at the post-laminectomy site is an important cause of FBSS, which causes considerable morbidity in approximately 40% of patients that undergo spinal surgery and has high health care costs. As EF cannot be effectively treated after its formation, the key is to prevent the migration of fibroblasts to the dura in the early recovery stage after spinal surgery. Thus, the placement of a physical barrier to restrict cell migration may be an effective approach for reducing the incidence of EF. Although various biological and synthetic materials have been tried to prevent EF, this issue has not been fully elucidated [5-9].

HAM dressings are reported to have beneficial effects on tissue reparation and regeneration due to their anti-inflammatory, re-epithelialization, anti-scarring, antibacterial, and analgesic activities. In addition to containing many growth factors, anti-vasculogenic factors, and anti-inflammatory cytokines, HAMs have low immunogenicity. HAMs have been extensively employed in medical fields such as ophthalmology and for treating conditions such as bone defects, skin burns, and bladder or oral cavity reconstruction [16, 17]. However, fresh amniotic membrane carries a risk of disease transmission. Thus, processing methods such as glycerol treatment, irradiation, lyophilization, or cryopreservation are required. However, these methods may damage collagen construction or leave behind residual chemical agents. Therefore, processing methods that protect the biological efficacy of HAMs while providing safety are important [18]. Recently, a method involving mild cleansing and dehydration was used to protect and retain the biological activities of the natural amnion [14]. In this study, the potential of dHACM processed using this method to function as a barrier for preventing EF after laminectomy was assessed. Indeed, the findings of this study support that dHACM can significantly reduce EF formation.

Previous studies, mostly experimental, on the effects of HAM on EF formation following spinal surgery are summarized in Table 3 and favorable outcomes were noted [5, 19-21]. Till date, only one case series by Subach et al. [20] has reported the use of dHACM. They reported that dHACM during

<table>
<thead>
<tr>
<th>Authors (Year)</th>
<th>Study Design</th>
<th>Product Type</th>
<th>Study Subjects</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choi et al. [19] (2011)</td>
<td>Animal model (rat)</td>
<td>Irradiated FAM</td>
<td>20 rats</td>
<td>Irradiated FAM effectively reduced epidural fibrosis</td>
</tr>
<tr>
<td>Subach et al. [20] (2015)</td>
<td>Human case series</td>
<td>dHACM</td>
<td>5 patients</td>
<td>dHACM implant during TLIF had favorable results on epidural fibrosis formation</td>
</tr>
<tr>
<td>Kara et al. [21] (2015)</td>
<td>Animal model (rat)</td>
<td>Fresh HAM, Human Amniotic fluid</td>
<td>27 rats</td>
<td>Fresh HAM and human amniotic fluid were found to have favorable results for preventing epidural fibrosis but not significantly</td>
</tr>
</tbody>
</table>

FAM = Freeze dried amniotic membrane, CAM = Cross-linked amniotic membrane, AFF = Autologous free fat, TLIF = Transforaminal lumbar interbody lumbar fusion, dHACM = Dehydrated human amnion/chorion membrane, HAM = Human amniotic membrane
transforaminal lumbar interbody lumbar fusion (TLIF) can positively prevent EF formation and simplify dissection in secondary surgery.

CONCLUSION

In conclusion, the present study found that dHACM can effectively reduce EF formation after spinal laminectomy. In our knowledge, this is the first study demonstrating reduction epidural fibrosis following laminectomy in a small animal study via dHACM graft. Further studies are needed to verify these findings. Future studies should also compare the efficacy and complications of different HAM types.

Conflict of interest

The author disclosed no conflict of interest during the preparation or publication of this manuscript.

Financing

The author disclosed that they did not receive any grant during conduction or writing of this study.

REFERENCES