HASAT ZAMANI VE HASAT SONRASI OLGUNLUĞA BAĞLI OLARAK BAZI AVOKADO (Persea americana Mill) ÇEŞİTLERİNİN BİLEŞİMİNDEKİ DEĞİŞİMLER

CHANGES IN COMPOSITION OF SOME AVOCADO (Persea americana Mill.) CULTIVARS DURING HARVESTING TIME AND POSTHARVEST RIPENING PERIOD

Feramuz ÖZDEMİR¹, Ayhan TOPUZ², Aliye DEMİRKOŁ², Muharrem GÖLÜKÇÜ²

¹Akdeniz Üniversitesi Ziraat Fakültesi Gida Mühendisliği Bölümü, Antalya
²Narenciye ve Seracılık Araştırma Enstitüsü, Antalya

ÖZET: Bu araştırmda Bacon, Fuerte, Hass ve Zutano çeşitlerinde avokado (Persea americana Mill) meyvelerinin bazı fiziksel ve kimyasal özelliklerinin hasat zamanı ve hasat sonrası olgunlaşma periyoduna göre değişimi belirlenmiştir.

Örtalmalı meyve eti oran %81.3 olan örneklerde toplam kurumadde %21.86-26.25, yağ %12.22-17.29, protein %1.63-2.42, kül %0.94-1.27 ve litre edilebilir asit miktar %0.08-0.11 (sütlük asit) değerleri arasında değişmiştir. Avokado yağında en fazla oleik asit (%49.66-66.51) bulunukten, bu yağ asitini, palmitik asit (%15.35-22.26) ve linoleik asit (%9.88-15.60) izlemiştir. Meyve mineral maddelerinden potasyum 4396-5882 mg/kg, magnezyum 179.8-250.1 mg/kg, kalsiyum 73.49-99.70 mg/kg, sodyum 16.64-27.48 mg/kg, demir 1.88-6.07 mg/kg, bakır 2.24-3.42 mg/kg, çinko 3.09-4.95 mg/kg ve mangan 0.73-1.21 mg/kg değerleri arasında değişim göstermiştir.

ABSTRACT: Some physical and chemical properties of avocado fruit (Persea americana cv. Bacon, Fuerte, Hass and Zutano) were examined with respect to the harvesting time and postharvest ripening period.

Some properties of avocado flesh (flesh ratio of the fruit is 61.3%), were determined as follows: 21.86-26.25% total dry matter, 12.22-17.28% lipid, 0.08-0.11% titratable acidity (citric acid), 1.63-2.42% protein and 0.94-1.27% ash. The main fatty acid of avocado oil was oleic acid (49.66-66.51%), which was followed by palmitic acid (15.35-22.26%) and linoleic acid (9.88-15.60%). Mineral contents of samples as follows: K 4396-5882 mg/kg, Mg 179.8-250.1 mg/kg, Ca 73.49-99.70 mg/kg, Na 16.64-27.48 mg/kg, Fe 1.88-6.07 mg/kg, Cu 2.24-3.42 mg/kg, Zn 3.09-4.95 mg/kg, and Mn 0.73-1.21 mg/kg.

Fruit weight, total dry matter, lipid and protein content increased of all cultivars according to the length of the time that the fruits remained on the tree. It is also the fatty acid composition has change in this period. Although oleic acid increased with late harvest, other fatty acids either decreased or did not significantly change. During post-harvest ripening period, unsaturated fatty acids ratio of the samples increased.

GİRİŞ

Bu çalışmada, ülkeyizde ticari olarak yetiştirilen avokado çeşitlerinin öne Michael başlı içerikleri ve bunların hasat zamanına ve hasat sonrası olgulanma periyoduna bağlı olarak değişimi araştırılmıştır.

MATEYAL ve YÖNTEM

Materyaal

Analiz edilicek örnekler her grupta tesadüfi olarak alınan 8 adet meyvenin el blenderi (Beko) ile homojenize edilmesiyle hazırlanmıştır.

YönTEM
Avokado yağının yağı asılı kompozisyonunu belirlemek için meyveden ekstrakte edilen yağ metil esterlerine dönüştürüldükten (GARCES ve MANCHA, 1993) sonra gaz kromatografisi cihazına (Fisons Instrument HRGC) enjekte edilmiş ve aşındırmalı koşularda yağ asitler ayrılmıştır.

Gaz kromatografisinde taşıyıcı gaz olarak helyum (150kPa) kullanılmış, 250 °C'deki enjeksiyon bloğuna enjekte edilen 1 μl örnek kapiller kolonda (25mx0.25mmID) dereceli elüsonla (150°C'den 200°C'ye, 5°C/dakika) ayrıldıktan sonra FID dedektörü (260°C) ile taniqlanmıştır. Kromatogramdaki pikleri tanımlayabilmek için önce standard yağ asidi metil esterleri (Sigma) enjekte edilmiş, analiz şartlarında tutulma zamanlarını belirlenmiştir.

BULGULAR ve TARTIŞMA

Avokado meyvesinin çeşitlere ve hasat zamanına göre meyve ağırlığı, çekirdeğ ağırlığı ve meyve eti oranı dağılımları Çizelge 1'de verilmiştir. Araştırmada incelenen avokadoların meyve ağırlığı 157.0-267.2 g arasında değişmekte olup ortalamalar 216.7 g dir. Aralık ayında hasat edilen meyvelerin ağırlığı Kasım ayında hasat edilenlere oranla daha yüksek olmuştur. Ancak, meyve eti oranında benzeri bir artış görülmemiştir. Kasım ayında hasat edilen örneklerde meyve eti oranı %82.6, Aralık ayında bu oran %80 olarak tespit edilmiştir. Bu da ağırlık artışının meyve çekirdeklерinde olduğunu göstermektedir. Örneklerden meyve eti oranı en yüksek çiğin Kasım ayında Fuerte, Aralık ayında ise Hass olduğu belirlenmiştir.

Çizelge 1. Avokadonun Bazı Fiziksel Özellikleri

<table>
<thead>
<tr>
<th>Hasat Zamanı</th>
<th>Çeşitler</th>
<th>Meyve Ağırlığı (g)</th>
<th>Çekirdeğ Ağırlığı (g)</th>
<th>Meyve Eti Oranı (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kasım</td>
<td>Bacon</td>
<td>209.0</td>
<td>49.1</td>
<td>76.5</td>
</tr>
<tr>
<td></td>
<td>Fuerte</td>
<td>211.5</td>
<td>28.9</td>
<td>86.3</td>
</tr>
<tr>
<td></td>
<td>Hass</td>
<td>157.0</td>
<td>21.3</td>
<td>85.9</td>
</tr>
<tr>
<td></td>
<td>Zutano</td>
<td>250.8</td>
<td>45.9</td>
<td>81.8</td>
</tr>
<tr>
<td>Kasım Ort.</td>
<td></td>
<td>207.1</td>
<td>36.3</td>
<td>82.6</td>
</tr>
<tr>
<td>Aralık</td>
<td>Bacon</td>
<td>235.3</td>
<td>50.1</td>
<td>78.6</td>
</tr>
<tr>
<td></td>
<td>Fuerte</td>
<td>239.7</td>
<td>42.8</td>
<td>81.8</td>
</tr>
<tr>
<td></td>
<td>Hass</td>
<td>163.0</td>
<td>28.8</td>
<td>82.1</td>
</tr>
<tr>
<td></td>
<td>Zutano</td>
<td>267.2</td>
<td>56.7</td>
<td>77.3</td>
</tr>
<tr>
<td>Aralık Ort.</td>
<td></td>
<td>226.3</td>
<td>44.6</td>
<td>80.0</td>
</tr>
<tr>
<td>Genel Ort.</td>
<td></td>
<td>216.7</td>
<td>40.5</td>
<td>81.3</td>
</tr>
</tbody>
</table>

Fiziksel özellikleri belirlenen avokado çeşitlerinin iki farklı hasat zamanı ve üç farklı hasat sonrası olgunluk aşamasında belirlenen bazı kimyasal analiz sonuçları Çizelge 2'de verilmiştir.

Çizelge 2. Avokadonun Hasat Zamani, Çeşit ve Olgunluğa Bağlı, Bazi Kimyasal Özellikleri

<table>
<thead>
<tr>
<th>Faktörler</th>
<th>TKM (%)</th>
<th>Yağ (%)</th>
<th>pH</th>
<th>TA (%)</th>
<th>Protein (%)</th>
<th>Kül (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çeşit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacon</td>
<td>24.79<sup>b</sup></td>
<td>16.44<sup>b</sup></td>
<td>6.69<sup>ba</sup></td>
<td>0.10<sup>a</sup></td>
<td>2.09<sup>b</sup></td>
<td>1.13<sup>c</sup></td>
</tr>
<tr>
<td>Puerte</td>
<td>26.25<sup>a</sup></td>
<td>17.28<sup>a</sup></td>
<td>6.66<sup>b</sup></td>
<td>0.10<sup>a</sup></td>
<td>1.90<sup>b</sup></td>
<td>1.21<sup>b</sup></td>
</tr>
<tr>
<td>Hass</td>
<td>22.95<sup>c</sup></td>
<td>12.23<sup>d</sup></td>
<td>6.71<sup>a</sup></td>
<td>0.11<sup>a</sup></td>
<td>2.42<sup>a</sup></td>
<td>1.27<sup>a</sup></td>
</tr>
<tr>
<td>Zutano</td>
<td>21.88<sup>d</sup></td>
<td>13.35<sup>c</sup></td>
<td>6.61<sup>c</sup></td>
<td>0.08<sup>b</sup></td>
<td>1.63<sup>d</sup></td>
<td>0.94<sup>d</sup></td>
</tr>
<tr>
<td>Hasat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kasm</td>
<td>22.26<sup>b</sup></td>
<td>13.25<sup>b</sup></td>
<td>6.70<sup>a</sup></td>
<td>0.09<sup>b</sup></td>
<td>1.93<sup>b</sup></td>
<td>1.14</td>
</tr>
<tr>
<td>Aralık</td>
<td>25.67<sup>a</sup></td>
<td>16.41<sup>b</sup></td>
<td>6.63<sup>c</sup></td>
<td>0.11<sup>a</sup></td>
<td>2.09<sup>a</sup></td>
<td>1.14</td>
</tr>
<tr>
<td>Olgunluk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>23.90</td>
<td>14.31<sup>b</sup></td>
<td>6.53<sup>c</sup></td>
<td>0.10<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>24.00</td>
<td>15.09<sup>a</sup></td>
<td>6.79<sup>a</sup></td>
<td>0.08<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>24.01</td>
<td>15.08<sup>a</sup></td>
<td>6.68<sup>b</sup></td>
<td>0.11<sup>a</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TKM: Toplam kurumadde, TA: Titrasyon asitliğine (Suşuz asit cisimindeden. Değişik harfler: her bir faktör için ortalamaların önemli (p<0.05) düzeyde farklı olduğu göstermektedir. Varyans analizinde önemli çikan faktörler harflendirmemiştir.

Meyvenin en önemli kimyasal kalite kriterleri olan toplam kurumadde, yağ ve protein miktarları üzerine hasat zamannın etkisi önemli (p<0.01) bulunmuştur. Aralıklar arasında hasat edilen örneklerin toplam kurumadde, yağ ve protein miktarları Kasm aralığında hasat edilenere oranla daha yüksek bulunmaktadır. Örneklerin kül miktarı ise hasat zamanına göre bir farklılık göstermemiştir (p>0.05).

Hasat sonrası olgunlaşma periyodunda ise toplam kurumadde miktarı değişimi önemlidir. Özellikle olgunlaşmanın ilk dört gününde yağ miktarında belirgin bir artış olduğu saptanmıştır (Çizelge 2). Bu artış kurumadde bileşenler arasında bir değişim olabileceğini düşündürmektedir. Ancak eldeki verilerle böyle bir dönüşümün hangi bileşenler arasında olduğunu söylemek güçtür.

Örneklerin pH ve titrasyon asitliğini değerleri sırasıyla 6.53-6.79 ve 0.08-0.11 arasında değişmektedir. pH ve titrasyon asitliğini değeri en yüksek çiçeş Hass iken en düşük çiçeş Bacon olmuştur. pH değerleri açısından çiçekler arasında önemli (p<0.05) farklılık var iken asitlik bakımından sadece Zutano çiçekler diğer çiçeklerden önemli (p<0.05) düzeyde farklılık göstermiştir (Çizelge 2). Ancak çiçekler arasındaki bu farklılık sayısalar olarak belirsizmixin wazamle aşısından önemli sayılacak düzeye değildir.

Hasadin geçikirilmesi, avokado meyvesinin titrasyon asitliğinin önemli (p<0.01) düzeyde artmasına, pH'sinin ise düşmesine neden olmuştur. Yani meyve ağaç üzerinde kalıdır sıkı sürede içerisinde asit sentezlemeye devam etmiştir. Meyvenin hangi organik asit bakımından daha zengin olduğu konusunda literatür bilgisine rastlanamamıştır. Meyvede hasat sonrası olgunlaşma periyodunda pH once artmış, sonra tekrar azalmıştır. Titrasyon asitliğinde ise bu durumun tam tersi görülmüştür.

Avokadonun en önemli kimyasal bileşeni olan yağın, yağ asidi kompozisyonu iki farklı hasat zamanında ve üç farklı hasat sonrasi olgunlaşma periyodunda analiz edilmiş, elde edilen ortalamalar Çizelge 3'de verilmistir.

Varyans analizi sonuçları stearkin asit haric diğer yağ asitleri açısından önemli (p<0.01) derecede farklılık olduğunu göstermiştir. Örnekler arasında oleik asit içeriği en yüksek olan Bacon, en düşük olan ise Hass çiçeği. Avokado yağının bileşiminde önemli yer tutan palmitik, palmitoleik ve linoleik asit ise en yüksek oranda Hass çiçeğinde tespit edilmiştir. Ayrıca avokado yağında diğer yağ asitlerine oranla daha düşük oranda bulunan stearkin, linolenik ve araşık asit asitleri de yine Hass çiçeğinde en yüksek oranda bulunmuştur (Çizelge 3). Bu da Hass çiçeğinin dikkat çeken bir diğer özelliği.
Çizelge 3. Avakodonun Hastat Zamanı, Çeşit ve Olgunluğa Bağılı Yağ Asidi Kompozisyonu (%)

<table>
<thead>
<tr>
<th>Faktörler</th>
<th>Palmitik Asit</th>
<th>Palmitoleik Asit</th>
<th>Stearik Asit</th>
<th>Oleik Asit</th>
<th>Linoleik Asit</th>
<th>Linolenik Asit</th>
<th>Araşdıklık Asit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çeşit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacon</td>
<td>15.36⁶</td>
<td>6.79⁹</td>
<td>0.16</td>
<td>66.51³</td>
<td>9.88³</td>
<td>0.04³</td>
<td>0.42³</td>
</tr>
<tr>
<td>Fuerte</td>
<td>20.07⁵</td>
<td>6.33³</td>
<td>0.22</td>
<td>61.39³</td>
<td>10.93³</td>
<td>0.10³</td>
<td>0.43³</td>
</tr>
<tr>
<td>Hass</td>
<td>22.26⁸</td>
<td>10.88⁸</td>
<td>0.23</td>
<td>49.66³</td>
<td>15.60⁸</td>
<td>0.26⁸</td>
<td>0.85⁸</td>
</tr>
<tr>
<td>Zutano</td>
<td>15.35⁶</td>
<td>6.25³</td>
<td>0.17</td>
<td>66.30³</td>
<td>10.81³</td>
<td>0.09⁶</td>
<td>0.63³</td>
</tr>
<tr>
<td>Hasat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kasım</td>
<td>20.12¹⁸</td>
<td>8.17¹⁸</td>
<td>0.30¹⁸</td>
<td>58.29¹⁸</td>
<td>11.75¹⁸</td>
<td>0.18¹⁸</td>
<td>0.61¹⁸</td>
</tr>
<tr>
<td>Aralık</td>
<td>16.40¹⁸</td>
<td>6.96¹⁸</td>
<td>0.09¹⁸</td>
<td>63.64¹⁸</td>
<td>11.84¹⁸</td>
<td>0.07¹⁸</td>
<td>0.57¹⁸</td>
</tr>
<tr>
<td>Olgunluk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>18.63¹⁸</td>
<td>7.81¹⁸</td>
<td>0.24¹⁸</td>
<td>60.42¹⁸</td>
<td>11.96¹⁸</td>
<td>0.11¹⁸</td>
<td>0.67¹⁸</td>
</tr>
<tr>
<td>2.</td>
<td>18.53¹⁸</td>
<td>7.47¹⁸</td>
<td>0.22¹⁸</td>
<td>62.03¹⁸</td>
<td>10.70¹⁸</td>
<td>0.06¹⁸</td>
<td>0.52¹⁸</td>
</tr>
<tr>
<td>3.</td>
<td>17.62¹⁸</td>
<td>7.41¹⁸</td>
<td>0.12¹⁸</td>
<td>60.45¹⁸</td>
<td>12.70¹⁸</td>
<td>0.20¹⁸</td>
<td>0.59¹⁸</td>
</tr>
</tbody>
</table>

Değişik harfler her bir faktör için ortalamaların önemli (p<0.05) düzeyinde farklı olduğunu göstermektedir. Varyans analizinde önemli olan faktörler hafiflıkla belirtilmiştir.

Araştırmada etkisi incelenilen bir diğer faktör olan hastat sonrası olgunlaşma periyodunda yağ asitlerinin tamamında zamanda bağlı olarak önemli (p<0.01) değişmeler olmuştur. Olgunlaşma devam ederken palmitik, palmitoleik ve stearik asit oranlarının düştüğü, linoleik ve linolenik asit oranlarının ise arttığı yani çoku doyma-mışıkta bir artış olduğu görülmüştür. Hastat sonrası olgunlaşma aşamasında örneklerin oleik asit oranında önce artış sonra azalış, araşıdırık asit oranında ise önce azalış sonra artış olmuştur. Belirilen değişmeler, yağ asitlerini arasında dönüşümler olduğunu göstermektedir.

Besterne açısından önemli bir madde grubu olan mineral madde içeriğleri de örneklerin hastat zamanına göre belirlenmiş, ortalama değerler Çizelge 4’de verilmiştir. Avakodon örneklerinin 4396-5882 mg/kg potasyum, 179.8-259.1 mg/kg magnezyum, 73.49-99.70 mg/kg kalsiyum, 16.84-27.48 mg/kg sodyum, 1.88-6.07 mg/kg demir, 2.24-3.42 mg/kg bakır, 3.09-4.95 mg/kg çinko ve 0.73-1.21 mg/kg mangan içermekte olduğu belirlenmiştir (Çizelge 4). İncelenen örnekler arasında mineral madde içeriği en yüksek çinko'da Hass, en düşük çinko'da ise Zutano olduğu saptanmıştır.

Analiz edilen mineral madde değerlerinin hepsi çesitler arasında önemli (p<0.01) düzeyde farklılık göstermektedir. Bakır ve çinko içeriği bakımından Zutano haric diğer çesitler, demir içeriği bakımından da Hass çesit haric diğer çesitler arasında istatistiksel bir farklılık (p>0.05) görülmemektedir. Meyvelere aynı işlemler uygulanıdı, aynı zamanda ve aynı parselden hastat edildiği düşünülmediktesi, çesitler arasındaki farklılıkların çesidin kendisi.

Çizelge 4. Avakodonun Hastat Zamanı ve Çeşide Göre Mineral Madde İçeriği (mg/kg)

<table>
<thead>
<tr>
<th>Faktörler</th>
<th>K</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>Fe</th>
<th>Cu</th>
<th>Zn</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çeşit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacon</td>
<td>4970⁶</td>
<td>224.¹⁸</td>
<td>73.49³</td>
<td>21.49³</td>
<td>2.24³</td>
<td>3.42³</td>
<td>4.55³</td>
<td>1.20³</td>
</tr>
<tr>
<td>Fuerte</td>
<td>5374⁵</td>
<td>202.¹⁸</td>
<td>96.24³</td>
<td>16.64³</td>
<td>3.12³</td>
<td>3.26³</td>
<td>4.35³</td>
<td>1.03³</td>
</tr>
<tr>
<td>Hass</td>
<td>5882³</td>
<td>259.¹⁸</td>
<td>99.70³</td>
<td>27.48³</td>
<td>6.07³</td>
<td>2.98³</td>
<td>4.9³</td>
<td>1.21³</td>
</tr>
<tr>
<td>Zutano</td>
<td>4396⁶</td>
<td>179.⁸</td>
<td>83.84³</td>
<td>20.76³</td>
<td>1.88³</td>
<td>2.24³</td>
<td>3.09³</td>
<td>0.73³</td>
</tr>
<tr>
<td>Hasat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kasım</td>
<td>4943³</td>
<td>214.⁰</td>
<td>95.32³</td>
<td>16.49³</td>
<td>5.60³</td>
<td>2.97³</td>
<td>4.19³</td>
<td>1.19³</td>
</tr>
<tr>
<td>Aralık</td>
<td>5368³</td>
<td>218.⁵</td>
<td>81.32³</td>
<td>26.69³</td>
<td>1.6³</td>
<td>2.98³</td>
<td>4.28³</td>
<td>0.99³</td>
</tr>
</tbody>
</table>

Değişik harfler her bir faktör için ortalamaların önemli (p<0.05) düzeyinde farklı olduğunu göstermektedir. Varyans analizinde önemli olan faktörler hafiflıkla belirtilmiştir.

SONUÇ

Ekonomik önemi gittikçe artan bu meyve için ülkemizde oldukça yüksek bir üretim potansiyeli vardır. Sosyallanmış zenginleştirme ve beslenmeye katkı sağlayacak olan bu meyvinin taze tüketimi dışında değişik tıcari ürünlerine genişlemesi konusunda da çalışmaları ihtiyaç vardır.

TEŞEKKÜR
Yazarlar, bu çalışmaya destekleyen Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Yönetimi Birimi (Proje No: 98.01.0104.06) çalışanlarına ve katkılarından dolayı Narenciye ve Seracılık Araştırma Enstitüsü Müdürü Dr. Ali Öztürk’te teşekkür ederler.

KAYNAKLAR

