Yıl 2018, Cilt 6, Sayı 1, Sayfalar 328 - 348 2018-01-31

Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci

Osman İyibilgin [1] , Fehim Fındık [2]

165 497

Stent, çeşitli nedenlerle engellenen damarlar için yapay bir koridor açmak, bu bölgede destek yapısı oluşturarak tıkanıklığı gidermek amacıyla kullanılan elemanlara verilen isimdir. Polimerik ve metalik içerikli biyo-uyumlu malzemelerin geliştirilmesi ve yaygınlaşması, stent uygulamalarındaki başarının artmasına neden olmaktadır. Günümüzde nitinolden imal edilen metal stentler yaygın olarak kullanılmakla birlikte, biyo-bozunur metal stentler konusunda araştırmalar devam etmektedir. Bilindiği üzere stentin görevi, implantasyondan sonraki 6-12 aylık evreden sonra tamamlanmakta ve bu süreden sonra herhangibir işlevi kalmamaktadır. Ancak kalıcı stentler bu süre tamamlandıktan sonra da vücut içerisinde kalmakta ve zaman zaman komplikasyonlara neden olmaktadır. Bu amaca yönelik aday malzemelerin, stent üretiminde kabul görmüş 316L paslanmaz çeliklerin mekanik özelliklerine sahip olması, biyo-bozunur olması ve kendisinin ve bozunan ürünlerin toksik etkiye sahip olmaması beklenmektedir. Bu makale, son 15 yılda biyo-bozunur stentler için metalik içeriğe sahip materyallerin tasarımında ve değerlendirilmesinde yapılan en son yenilikleri gözden geçirmektedir.
Stent, Biyo-Bozunur, Mekanik Özellik, Tasarım
  • Bhat, S.V., “Biomaterials”, Kluwer Academic Publishers: Boston, MT, USA, 2002, p. 265.
  • Park, J.B., Lakes, R.S., “Biomaterials an Introduction”, 3rd ed., Springer SpringerLink (Service en ligne): New York, NY, USA, 2007, p. 561.
  • Witte, F. “The history of biodegradable magnesium implants: a review”, Acta Biomater., 6, 2010, 1680–1692.
  • Webster, T.J. “Nanotechnology Enabled in Situ Sensors for Monitoring Health”, Springer Verlag: New York, NY, USA, 2010.
  • Schulz, M.J.; Shanov, V.N.; Yun, Y., “Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices”, Artech House: Boston, MT, USA, 2009.
  • Moore, J.E.; Zouridakis, G., “Biomedical Technology and Devices Handbook”, CRC Press: Boca Raton, FL, USA, 2004.
  • Chan, A.W.; Moliterno, D.J., “In-stent restenosis: update on intracoronary radiotherapy”, Cleve. Clin. J. Med. 68, 2001, 796–803.
  • Saito, S., “New horizon of bioabsorbable stent”, Catheter. Cardiovasc. Interv. 66, 2005, 595–596.
  • Erne, P.; Schier, M.; Resink, T.J., “The road to bioabsorbable stents: reaching clinical reality?” Cardiovasc. Interv. Radiol., 29, 2006, 11–16.
  • Peuster, M.; Wohlsein, P.; Brugmann, M.; Ehlerding, M.; Seidler, K.; Fink, C.; Brauer, H.; Fischer, A.; Hausdorf, G., “A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits”, Heart, 86, 2001, 563–569.
  • Colombo, A., Karvouni, E., “Biodegradable stents: ―fulfilling the mission and stepping away”, Circulation, 102, 2000, 371–373.
  • Hermawan, H., Dubé, D., Mantovani, D., “Developments in metallic biodegradable stents”, Acta Biomaterialia, 6, 2010, 1693–1697.
  • Heublein B., Rohde R., Kaese V., Niemeyer M., Hartung W., Haverich A., “Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?”, Heart, 89: 2003, 651–6.
  • Erbel R., Di Mario C., Bartunek J., Bonnier J., de Bruyne B., Eberli FR., et al., “Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial”, Lancet, 369, 2007, 1869–75.
  • Ormiston JA, Serruys PW, Regar E, Dudek D, Thuesen L, Webster MWI, et al., “A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial”, Lancet 371, 2008, 899–907.
  • Bosiers M, Peeters P, D’Archambeau O, Hendriks J, Pilger E, Duber C, et al., “AMS INSIGHT – absorbable metal stent implantation for treatment of below-theknee critical limb ischemia: 6-month analysis”, Cardiovasc Intervent Radiol, 32, 2009, 424–35.
  • Zartner P, Cesnjevar R, Singer H, Weyand M., “First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby”, Catheter Cardiovasc Interv, 66, 2005, 590–4.
  • Peeters P, Bosiers M, Verbist J, Deloose K, Heublein B., “Preliminary results after application of absorbable metal stents in patients with critical limb ischemia”, J Endovasc Ther, 12: 2005,1–5.
  • Hermawan, H., Mantovani, D., “Process of prototyping coronary stents from biodegradable Fe–Mn alloys”, Acta Biomaterialia, 9, 2013, 8585–8592.
  • Moravej, M., and Mantovani, D., “Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities”, Int. J. Mol. Sci., 12, 4250-4270, 2011.
  • Mani, G., Feldman, M.D., Patel, D., Agrawal, C.M., “Coronary stents: A materials perspective”, Biomaterials, 28, 2007, 1689–1710.
  • Peuster, M., Hesse, C., Schloo, T., Fink, C., Beerbaum, P., von Schnakenburg, C., “Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta”, Biomaterials, 27, 2006, 4955–4962.
  • Waksman, R., Pakala, R., Baffour, R., Seabron, R., Hellinga, D., Tio, F.O., “Short-term effects of biocorrodible iron stents in porcine coronary arteries”, J. Interv. Cardiol, 21, 2008, 15–20.
  • Hermawan, H., Dube, D., Mantovani, D., “Development of degradable Fe-35Mn alloy for biomedical application”, Adv. Mater. Res., 15, 2007, 107–112.
  • Hermawan, H., Alamdari, H., Mantovani, D., Dube, D., “Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy”, Powder Metall, 51, 2008, 38–45.
  • Hermawan, H., Purnama, A., Dube, D., Couet, J., Mantovani, D., “Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies”, Acta Biomater, 6, 2010, 1852–1860.
  • Hermawan, H., Dube, D., Mantovani, D., “Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents”, J. Biomed. Mater. Res. A, 93, 2010, 1–11.
  • Schinhammer, M., Hanzi, A.C., Loffler, J.F., Uggowitzer, P.J., “Design strategy for biodegradable Fe-based alloys for medical applications”, Acta Biomater, 6, 2010, 1705–1713.
  • Liu, B., Zheng, Y., “Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron”, Acta Biomater, 7, 2010, 1407–1420.
  • Liu, B., Zheng, Y., Ruan, L., “In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material”, Mater. Lett, 65, 2010, 540–543.
  • ASTM F756-08, “Standard Practice for Assessment of Hemolytic Properties of Materials”, ASTM International: West Conshohocken, PA, USA, 2008, doi: 10.1520/F0756-08.
  • Moravej, M., Prima, F., Fiset, M., Mantovani, D., “Electroformed iron as new biomaterial for degradable stents: Development process and structure-properties relationship”, Acta Biomater, 6, 2010, 1726–1735.
  • Moravej, M., Purnama, A., Fiset, M., Couet, J., Mantovani, D., “Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies”, Acta Biomater, 6, 2010, 1843–1851.
  • Moravej, M., Amira, S., Prima, F., Rahem, A., Fiset, M., Mantovani, D., “Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents”, Mater. Sci. Eng., B 2011.
  • Nie, F., Zheng, Y., Wei, S., Hu, C., Yang, G., “In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron”, Biomed. Mater, 5, 065015, 2010.
  • J. Cheng, T. Huang, Y. F. Zheng, “Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe–Fe2O3 composites”, Journal of Biomedical Materıals Research A, Vol 102a, Issue 7, Jul 2014, 2277-2287.
  • Jeremy E. Schaffer, Eric A. Nauman, Lia A. Stanciu, “Cold drawn bioabsorbable ferrous and ferrous composite wires: An evaluation of in vitro vascular cytocompatibility”, Acta Biomaterialia, 9, 2013, 8574–8584.
  • J. Cheng, Y.F. Zheng, “In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering”, Journal of Biomedical Materials Research B: Applied Biomaterials, Vol 101B, Issue 4, May 2013, 485-497.
  • F. L. Nie, Y. F. Zheng, “Surface chemistry of bulk nanocrystalline pure iron and electrochemistry study in gas-flow physiological saline”, Journal of Biomedical Materials Research B: Applied Biomaterials | Vol 100B, Issue 5, Jul 2012, 1400-1410.
  • Hermawan, H., Dube´, D., Mantovani, D., “Degradable metallic biomaterials: Design and development of Fe–Mn alloys for stents”, Journal of Biomedical Materials Research, Part A, 2009, 1-11.
  • Peuster, M., Beerbaum, P., Bach, F.W., Hauser, H, “Are resorbable implants about to become a reality?” Cardiol. Young, 16, 2006, 107–116.
  • Xu, L., Yu, G., Zhang, E., Pan, F., Yang, K, “In vivo corrosion behavior of Mg Mn Zn alloy for bone implant application”, J. Biomed. Mater. Res. A, 83, 2007, 703–711.
  • Niemeyer, M, “Magnesium Alloys as Biodegradable Metallic Implant Materials”. In Proceedings of 7th Conference on Advanced Materials and Processes, Rimini, Italy, 2001.
  • Heublein, B., Rohde, R., Niemeyer, M., Kaese, V., Hartung, W., Rocken, C., “Degradation of metallic alloys-A new principle in stent technology?”, J. Am. Coll. Cardiol., 35, 14a–15a, 2000.
  • Di Mario, C., Griffiths, H., Goktekin, O., Peeters, N., Verbist, J., Bosiers, M., Deloose, K., Heublein, B., Rohde, R., Kasese, V., Ilsley, C., Erbel, R, “Drug-eluting bioabsorbable magnesium stent”, J. Interv. Cardiol., 17, 2004, 391–395.
  • Waksman, R., Pakala, R., Kuchulakanti, P.K., Baffour, R., Hellinga, D., Seabron, R., Tio, F.O., Wittchow, E., Hartwig, S., Harder, C., Rohde, R., Heublein, B., Andreae, A., Waldmann, K.H., Haverich, A., “Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries”, Catheter. Cardiovasc. Interv., 68, 2006, 607–617.
  • Klocke, B., Diener, T., Fringes, M., Harder, C., “Degradable metal stent having agent-containing coating”, U.S. Patent 20090030507, January 2008.
  • Waksman, R., “Current state of the absorbable metallic (magnesium) stent”, Euro. Interv. Suppl. 5, F94–F98, 2009.
  • Lu, P., Fan, H., Liu, Y., Cao, L., Wu, X., Xu, X., “Controllable biodegradability; drug release behavior and hemocompatibility of PTX-eluting magnesium stents”, Colloids Surf. B Biointerfaces, 83, 2010, 23–28.
  • Kondyurin, A., Kondyurina, I., Bilek, M., “Biodegradable drug eluting coating of cardiovascular stents dewets and can cause thrombosis”, http://arxiv.org/abs/1101.0659.
  • Feyerabend, F., Fischer, J., Holtz, J., Witte, F., Willumeit, R., Drucker, H., Vogt, C., Hort, N., “Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines”, Acta Biomater., 6, 2010, 1834–1842.
  • Hänzi, A., Gunde, P., Schinhammer, M., Uggowitzer, P., “On the biodegradation performance of an Mg-Y-RE alloy with various surface conditions in simulated body fluid”, Acta Biomater., 5, 2009, 162–171.
  • Hänzi, A.C., Gerber, I., Schinhammer, M., Löffler, J.F., Uggowitzer, P.J., “On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys”, Acta Biomater., 6, 2010, 1824–1833.
  • Seitz, J.-M., Eifler, R., Bach, Fr.-W., Maier, H. J., “Magnesium degradation products: Effects on tissue and human metabolism”, Journal of Biomedical Materials Research A, Vol 102A, Issue 10, Oct 2014, 3744-3753.
  • Chen, Y., Yan, J., Wang, Z., Yu, S., Wang, X., Yuan, Z., Zhang, X., Zhao, C., Zheng, Q., “In vitro and in vivo corrosion measurements of Mg–6Zn alloys in the bile”, Materials Science and Engineering, C 42, 2014, 116–123.
  • Lock, J.Y., Wyatt, E., Upadhyayula, S., Whall, A., Nunez, V., Vullev, V.I., Liu, H., “Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications”, Journal of Biomedical Materials Research A, Vol 102A, Issue 3, 2014, 781-792.
  • Campos, C.M., Muramatsu, T., Iqbal, J., Zhang, YJ., Onuma, Y., Garcia-Garcia, H.M., Haude, M., Lemos, P.A., Warnack, B., and Serruys, P.W., “Bioresorbable Drug-Eluting Magnesium-Alloy Scaffold for Treatment of Coronary Artery Disease”, Int. J. Mol. Sci., 14, 2013, 24492-24500.
  • Peng, Q., Li, K., Han, Z., Wang, E., Xu, Z., Liu, R., Tian, Y., “Degradable magnesium-based implant materials with anti-inflammatory activity”, Journal of Biomedical Materials Research A, Vol 101A, Issue 7: Jul 2013,1898-1906.
  • Sternberg, K., Gratz, M., Koeck, K., Mostertz, J., Begunk, R., Loebler, M., Semmling, B., Seidlitz, A., Hildebrandt, P., Homuth, G., Grabow, N., Tuemmler, C., Weitschies, W., Schmitz, K.P., Kroemer, H.K., “Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro”, Journal of Biomedical Materials Research B: Applied Biomaterials, Vol 100B, Issue 1: Jan 2012, 41-50.
  • Lu, P., Cao, L., Liu, Y., Xu, X., Wu, X., “Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42”, Journal of Biomedical Materials Research B: Applied Biomaterials, Vol 96B, Issue 1: Jan 2011, 101-109.
  • Le´vesque, L., Hermawan, H., Dube´, D., Mantovani, D., “Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials”, Acta Biomaterialia, 4, 2008, 284–295.
Birincil Dil tr
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Makaleler
Yazarlar

Yazar: Osman İyibilgin
Kurum: SAKARYA ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ
Ülke: Turkey


Yazar: Fehim Fındık
Kurum: SAKARYA ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ
Ülke: Turkey


Bibtex @derleme { dubited319891, journal = {Düzce Üniversitesi Bilim ve Teknoloji Dergisi}, issn = {}, eissn = {2148-2446}, address = {Düzce Üniversitesi}, year = {2018}, volume = {6}, pages = {328 - 348}, doi = {10.29130/dubited.319891}, title = {Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci}, key = {cite}, author = {İyibilgin, Osman and Fındık, Fehim} }
APA İyibilgin, O , Fındık, F . (2018). Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 6 (1), 328-348. DOI: 10.29130/dubited.319891
MLA İyibilgin, O , Fındık, F . "Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6 (2018): 328-348 <http://dergipark.gov.tr/dubited/issue/34777/319891>
Chicago İyibilgin, O , Fındık, F . "Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6 (2018): 328-348
RIS TY - JOUR T1 - Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci AU - Osman İyibilgin , Fehim Fındık Y1 - 2018 PY - 2018 N1 - doi: 10.29130/dubited.319891 DO - 10.29130/dubited.319891 T2 - Düzce Üniversitesi Bilim ve Teknoloji Dergisi JF - Journal JO - JOR SP - 328 EP - 348 VL - 6 IS - 1 SN - -2148-2446 M3 - doi: 10.29130/dubited.319891 UR - http://dx.doi.org/10.29130/dubited.319891 Y2 - 2017 ER -
EndNote %0 Düzce Üniversitesi Bilim ve Teknoloji Dergisi Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci %A Osman İyibilgin , Fehim Fındık %T Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci %D 2018 %J Düzce Üniversitesi Bilim ve Teknoloji Dergisi %P -2148-2446 %V 6 %N 1 %R doi: 10.29130/dubited.319891 %U 10.29130/dubited.319891
ISNAD İyibilgin, Osman , Fındık, Fehim . "Metalik Biyo-Uyumlu Stentlerin Gelişim Süreci". Düzce Üniversitesi Bilim ve Teknoloji Dergisi 6 / 1 (Ocak 2018): 328-348. http://dx.doi.org/10.29130/dubited.319891