Yıl 2017, Cilt 26, Sayı 2, Sayfalar 151 - 161 2017-12-26

MODELING ABOVE GROUND BIOMASS IN CALABRIAN PINE FORESTS OF DÜZLERÇAMI (ANTALYA)
Düzlerçamı Kızılçam Ormanında (Antalya) Toprak Üstü Orman Biyokütlesinin Modellenmesi

Doğukan Doğu YAVAŞLI [1] , M. Kirami ÖLGEN [2]

112 104

Karbon stoklarındaki değişimlerin izlenmesi ile birlikte çeşitli diğer amaçlar için orman biyokütlesinin belirlenmesine ihtiyaç duyulmaktadır. Bu çalışma Düzlerçamı kızılçam ormanında (Antalya) toprak üstü orman biyokütlesinin Landsat ve ICESat/GLAS verileri kullanarak belirlenebilmesini test etmektedir. 2017 yılında arazi çalışmaları ile örneklem alanlarından toplanan veriler ile allometrik eşitlikler kullanılarak gerçek biyokütle verileri hesaplanmıştır. Toprak üstü orman biyokütlesinin modellenmesinde çok değişkenli regresyon analizi ile GLAS parametreleri ve çeşitli Landsat vejetasyon indekslerinden yararlanılmıştır. Birinci modelde (ModelA) GLAS verisinden medyan enerjinin yüksekliği (HOME) ve HOME’un maksimum yüksekliğe oranı parametrelerinin araziden toplanan biyokütle verileri ile olan ilişkisinde determinasyon katsayısı (R2) 0.87 olarak tespit edilmiştir. ModelA’dan elde edilen toprak üstü orman biyokütlesi ile çeşitli Landsat indekslerinin kullanıldığı ikinci modelde (ModelB) 0.52 bulunan R2 değeri GLAS verisinin çalışma alanında Landsat veriler ile zayıf bir korelasyonu bulunduğunu göstermiştir. Toprak üstü orman biyokütlesini açıklamak için Landsat indeks değerlerinin bağımsız değişken olarak kullanıldığı ModelC’de ise 0.91 R2 ile istatistiksel olarak daha anlamlı bir istatistiksel ilişki belirlenmiştir. Sonuçlar toprak üstü orman biyokütlesinin belirlenmesinde hava lidar verilerinin bulunmadığı durumlarda optik sensörlerin ve uydu tabanlı lidar verilerin güncel potansiyelini göstermektedir.

Estimation of forest biomass is needed for monitoring the changes in carbon stocks as well as other purposes. This study reports on a test of the ability to estimate above ground biomass of Calabrian pine forests of Düzlerçamı, Antalya, Turkey using Landsat and ICESat/GLAS data. The field data has been collected in 2017 and plot-level estimates were calculated using the allometric equations. GLAS parameters and various Landsat vegetation indices were modeled using multiple regression analysis to estimate above ground biomass. In the first model (ModelA) height of median energy (HOME) and the ratio of HOME to maximum vegetation height (%HOME) parameter of GLAS showed relation with field based estimates of above ground biomass with a coefficient of determination (R2) of 0.87. Above ground biomass derived from ModelA and the variables obtained from Landsat indices has been used at the second model (ModelB) had a R2 of 0.52 meaning the GLAS data is poorly correlated with Landsat at the study area. A better statistical relationship has been found with Landsat data and AGB with a R2 of 0.91 in ModelC that uses Landsat pixel values of each bands and pixel values of the indices are used as independent variable to explain above ground biomass. The results demonstrate a current potential for above ground biomass estimation of forests using optical sensor data and satellite lidar where airborne lidar data is not widely available.

  • Baccini A., Friedl M.A., Woodcock C.E., Warbington R., 2004. Forest biomass estimation over regional scales using multisource data. Geophysical Research Letters, 31, L10501, doi: 10.1029.
  • Baccini A., Laporte N., Goetz S. J., Sun M., Dong H., 2008. A First Map of Tropical Africa’s Above-ground Biomass Derived from Satellite Imagery, Environmental Research Letters, 3(4).
  • Birth, G. S., & McVey, G. R., 1968. Measuring the color of growing turf with a reflectance spectrophotometer. Agronomy Journal, 60(6), 640-643.
  • Brown L., Chen J. M., Leblanc S. G., Cihlar J., 2000. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: An image and model analysis. Remote sensing of environment, 71(1), 16-25.
  • Brown, S., 1997. Estimating biomass and biomass change of tropical forests: a primer (Vol. 134). Food & Agriculture Org..
  • Chambers, J. Q., Higuchi N., Teixeira L. M., Santos J. D., Laurance S. G., Trumbore S. E., 2004. Response of tree biomass and wood litter to disturbance in a Central Amazon forest, Oecologia, 141, 596 – 614.
  • Chave, J., Réjou‐Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., ... & Henry, M. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global change biology, 20(10), 3177-3190.
  • Crist E. P., Cicone R,. 1984. Application of the Tasseled Cap Concept to Simulated Thematic Mapper Data, Photogrammetric Engineering and Remote Sensing,50, 343-352.
  • Dong J., Kaufmann R.K., Myneni R.B., Tucker C.J., Kauppi P.E., Liski J., Buermann W., Alexeyev V., Hughes M.K., 2003. Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sensing of Environment, 84, 393–410.
  • Drake, J.B., Dubayah, R.O., Clark, D.B., Knox, R.G., Blair, J.B., Hofton, M.A., Prince, S., 2002. Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sensing of Environment. 79 (2), 305–319.
  • Foody G. M., Boyd D. S. Cutler M. E. J., 2003. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 85(4), 463-474.
  • Huete A. R., Liu H., Batchily K., van Leeuwen W., 1997. A Comparison of Vegetation Indices Over a Global Set of TM Images for EOS-MODIS. Remote Sensing of Environment, 59 (3), 440-451.
  • Huete A.R, 1998., A soil-adjusted vegetation index (SAVI), Remote Sensing of Environment, 25 (3), 295-309.
  • Kaufman Y. J., Tanre D., 1996. Strategy for Direct and Indirect Methods for Correcting the Aerosol Effect on Remote Sensing: from AVHRR to EOSMODIS. Remote Sensing of Environment. 55, 65-79.
  • Lefsky, M.A., Harding, D.J., Keller, M., Cohen, W.B., Carabajal, C.C., Espirito-Santo, D.B., F, Hunter, M.O., de Oliveira, R., Jr., 2005. Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical Research Letters, 32.
  • Lu D., Mausel P., Brondizio E., Moran E., 2002. Above-Ground Biomass Estimation of Successional and Mature Forests Using TM Images in the Amazon Basin. Symposium on Geospatial Theory, Processing and Applications. Lu D., Mausel P., Brondizio E., Moran E., 2004. Relationships Between Forest Stand Parameters and Landsat TM Spectral Responses in the Brazilian Amazon Basin. Forest Ecology and Management, 198 (1-3), 149–167.
  • Pinty B., Verstraete M. M., 1992. GEMI: a Non-linear Index to Monitor Global Vegetation from Satellites, Plant Ecology, 101 (1), 15-20.
  • Popescu, S. C., 2007. Estimating biomass of individual pine trees using airborne lidar. Biomass and Bioenergy, 31(9), 646-655.
  • Qi J., Chehbouni A., Huete A. R., Kerr Y. H., Sorooshian S., 1994a. A Modified Soil Adjusted Vegetation Index, Remote Sensing of Environment, 48 (2), 119-126.
  • Qi J., Kerr Y., Chehbouni A., 1994b. External factor consideration in vegetation index development. Proc. of Physical Measurements and Signatures in Remote Sensing, ISPRS, 723-730.
  • Rosette, J.A.B., North, P.R.J., Suarez, J.C., 2008. Vegetation height estimates for a mixed temperate forest using satellite laser altimetry. International Journal of Remote Sensing. 29 (5), 1475–1493.
  • Saatchi S. S., Houghton R. A., Dos Santos Alvalá R. C., Soares J. V., Yu Y., 2007. Distribution of Aboveground Live Biomass in the Amazon Basin, Global Change Biology, 13 (4), 816–37.
  • Saatchi S. S., Moghaddam M., 1995. Biomass of Boreal Forest Using Polarimetric SAR Imagery. Geoscience and Remote Sensing, IEEE Transactions, 38(2), 697-709.
  • Steininger M. K., 2000. Satellite estimation of tropical secondary forest aboveground biomass: data from Brazil and Bolivia. International Journal of Remote Sensing, 21, 1139–1157.
  • Sun O., Uğurlu S., Özer E., 1980. Kızılçam (Pinus brutia Ten.) türüne ait biyolojik kütlenin saptanması. Ormancılık Araştırma Enstitüsü Teknik Bülteni, Teknik Bülten Serisi No: 104.
  • Tucker C. J., 1979. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing of Environment, 8, 127-150.
  • Yavaşlı, D. D., 2016. Estimation of above ground forest biomass at Muğla using ICESat/GLAS and Landsat data. Remote Sensing Applications: Society and Environment, 4, 211-218.
  • Zolkos, S.G., Goetz, S.J., Dubayah, R., 2013. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sensing of Environment. 128, 289–298.
Konular Sosyal ve Beşeri Bilimler
Dergi Bölümü Makaleler
Yazarlar

Yazar: Doğukan Doğu YAVAŞLI (Sorumlu Yazar)

Yazar: M. Kirami ÖLGEN

Bibtex @araştırma makalesi { ecd371317, journal = {Ege Coğrafya Dergisi}, issn = {1300-5634}, eissn = {2636-8056}, address = {Ege Üniversitesi}, year = {2017}, volume = {26}, pages = {151 - 161}, doi = {}, title = {MODELING ABOVE GROUND BIOMASS IN CALABRIAN PINE FORESTS OF DÜZLERÇAMI (ANTALYA)}, key = {cite}, author = {ÖLGEN, M. Kirami and YAVAŞLI, Doğukan Doğu} }
APA YAVAŞLI, D , ÖLGEN, M . (2017). MODELING ABOVE GROUND BIOMASS IN CALABRIAN PINE FORESTS OF DÜZLERÇAMI (ANTALYA). Ege Coğrafya Dergisi, 26 (2), 151-161. Retrieved from http://dergipark.gov.tr/ecd/issue/33350/371317
MLA YAVAŞLI, D , ÖLGEN, M . "MODELING ABOVE GROUND BIOMASS IN CALABRIAN PINE FORESTS OF DÜZLERÇAMI (ANTALYA)". Ege Coğrafya Dergisi 26 (2017): 151-161 <http://dergipark.gov.tr/ecd/issue/33350/371317>
Chicago YAVAŞLI, D , ÖLGEN, M . "MODELING ABOVE GROUND BIOMASS IN CALABRIAN PINE FORESTS OF DÜZLERÇAMI (ANTALYA)". Ege Coğrafya Dergisi 26 (2017): 151-161
RIS TY - JOUR T1 - MODELING ABOVE GROUND BIOMASS IN CALABRIAN PINE FORESTS OF DÜZLERÇAMI (ANTALYA) AU - Doğukan Doğu YAVAŞLI , M. Kirami ÖLGEN Y1 - 2017 PY - 2017 N1 - DO - T2 - Ege Coğrafya Dergisi JF - Journal JO - JOR SP - 151 EP - 161 VL - 26 IS - 2 SN - 1300-5634-2636-8056 M3 - UR - Y2 - 2017 ER -
EndNote %0 Ege Coğrafya Dergisi MODELING ABOVE GROUND BIOMASS IN CALABRIAN PINE FORESTS OF DÜZLERÇAMI (ANTALYA) %A Doğukan Doğu YAVAŞLI , M. Kirami ÖLGEN %T MODELING ABOVE GROUND BIOMASS IN CALABRIAN PINE FORESTS OF DÜZLERÇAMI (ANTALYA) %D 2017 %J Ege Coğrafya Dergisi %P 1300-5634-2636-8056 %V 26 %N 2 %R %U
ISNAD YAVAŞLI, Doğukan Doğu , ÖLGEN, M. Kirami . "MODELING ABOVE GROUND BIOMASS IN CALABRIAN PINE FORESTS OF DÜZLERÇAMI (ANTALYA)". Ege Coğrafya Dergisi 26 / 2 (Aralık 2017): 151-161.