Yıl 2018, Cilt , Sayı 13, Sayfalar 124 - 128 2018-08-31

Nanoyapılı CuO İnce Filmlerin Bant Aralığının PEG Yüzey Aktif Maddesi Kullanılarak Kontrol Edilmesi
Band-gap Control of Nanostructured CuO Thin Films using PEG as a Surfactant

Halit Çavuşoğlu [1]

53 67

Nano yapılı bakır oksit ince filmler, oda sıcaklığında cam substratlar üzerinde, farklı miktarlarda polietilen glikol (PEG) ile kolay ve düşük maliyetli bir Ardışık İyonik Tabaka Adsorpsiyon ve Reaksiyonu (SILAR) yöntemi ile üretilmiştir. CuO ince filmlerin optik özellikleri üzerine PEG'in etkileri, ultraviyole görünür (UV-Vis) spektroskopisi analizi ile incelenmiştir. Oda sıcaklığında UV-Vis analizi ile, CuO ince filmlerin optik bant aralığı değerlerinin ve geçirgenlik özelliklerinin, büyüme çözeltisindeki artan PEG konsantrasyonuna bağlı olduğu görülmüştür. CuO ince filmlerin optik bant aralığı enerjisinin, artan PEG konsantrasyonu ile 1.30 eV değerinden 1.42 eV değerine çıktığı tespit edilmiştir. CuO ince filmlerin kalınlığı da, PEG konsantrasyonuna bağlı olarak 137 nm ile 680 nm arasında değiştiği bulunmuştur. Ayrıca, ince filmlerin kırılma indisi (n), yüksek frekanslı dielektrik sabiti (e¥) ve optik statik (e0) değerleri dahil olmak üzere diğer önemli parametreler, film kalınlığının bir fonksiyonu olarak optik bant aralığı enerji değerleri kullanılarak hesaplanmıştır. Yapılan incelemeler, PEG konsantrasyonunun SILAR yöntemiyle büyütülen CuO ince filmlerinin optik özellikleri üzerinde kayda değer bir etkisi olduğunu ortaya çıkarmıştır.

Nanostructured copper oxide thin films were fabricated on glass substrates at room temperature by a facile and cost-efficient Successive Ionic Layer Adsorption and Reaction (SILAR) method with varied amounts of polyethylene glycol (PEG). The effects of PEG on the optical properties of the CuO thin films were investigated by means of ultraviolet-visible (UV-Vis) spectroscopy analysis. By UV–Vis analysis at the room temperature, it was seen that the optical band gap values and transmission characteristics of the CuO thin films vary with the increasing PEG concentration in the growth solution. The optical band gap energy of the CuO thin films was found to increase from 1.30 eV to 1.42 eV with the increasing PEG concentration. The thickness of the CuO thin films was also found to vary in between 137 nm and 680 nm depending on the PEG concentration. Other significant parameters including refractive index (n), high frequency dielectric constant (e¥) and optical static (e0) values of the thin films were calculated by using the optical band gap energy values as a function of the film thickness. The investigations revealed that the PEG concentration has a remarkable impact on the optical properties of SILAR grown CuO thin films.

  • Adachi, S., 2005. Properties of Group IV, III-V and II-VI Semiconductors, Wiley, Chishester.
  • Akaltun, Y., Yıldırım, M.A., Ateş, A., Yıldırım, M. 2011. The Relationship between Refractive Index-Energy Gap and the Film Thickness Effect on the Characteristic Parameters of CdSe Thin Films. Optics Communications 284, 2307-2311.
  • Akaltun, Y., Çayır, T. 2015. Fabrication and characterization of NiO thin films prepared by SILAR method. Journal of Alloys and Compounds 625, 144-148.
  • Ateş, A., Yıldırım, M.A., Kundakçı, M., Astam, A. 2007. Annealing and light effect on optical and electrical properties of ZnS thin films grown with the SILAR method. Materials Science in Semiconductor Processing 10, 281-286.
  • Balamurugan, B., Mehta, B.R. 2001. Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin Solid Films 396 (1-2) 90-96.
  • Chang, H., Kao, M.-J., Cho, K.-C., Chen, S.-L., Chu, K.-H., Chen, C.-C. 2011. Integration of CuO thin films and dye-sensitized solar cells for thermoelectric generators. Current Applied Physics 11 (4), S19-S22.
  • Chary, K.V.R., Sagar, G.V., Naresh, D., Seela, K.K., Sridhar, B. 2005. Characterization and Reactivity of Copper Oxide Catalysts Supported on TiO2−ZrO2. Journal of Physical Chemistry B 109 (19), 9437-9444.
  • Chen, A., Long, H., Li, X., Li, Y., Yang, G., Lu, P. 2009. Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition. Vacuum 83 (6), 927-930.
  • Hannachi, L., Bouarissa, N. 2009. Band parameters for cadmium and zinc chalcogenide compounds. Physica B 404, 3650-3654.
  • Herve, P., Vandamme, L.K.J. 1994. General relation between refractive index and energy gap in semiconductors. Infrared Physics & Technology 35, 609-615.
  • Jozefczak, A., Skumiel, A. 2011. Ultrasonic investigation of magnetic nanoparticles suspension with PEG biocompatible coating. Journal of Magnetism and Magnetic Materials 323, 1509-1516.
  • Kidowaki, H., Oku, T., Akiyama, T. 2012. Fabrication and characterization of CuO/ZnO solar cells. Journal of Physics: Conference Series 352 (1), 012022–012025.
  • Koh, T., O'Hara, E., Gordon, M.J. 2013. Growth of nanostructured CuO thin films via microplasma-assisted, reactive chemical vapor deposition at high pressures. Journal of Crystal Growth 363, 69-75.
  • Lim, Y.-F., Chua, C.S., Lee, C.J.J., Chi, D. 2014. Sol–gel deposited Cu2O and CuO thin films for photocatalytic water splitting. Physical Chemistry Chemical Physics 16, 25928-25934.
  • Mageshwari, K., Sathyamoorthy, R. 2013. Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Materials Science in Semiconductor Processing 16 (2) 337-343.
  • Maity, R., Chattopadhyay, K.K. 2006. Synthesis and characterization of aluminum-doped CdO thin films by sol–gel process. Solar Energy Materials & Solar Cells 90 (5), 597-606.
  • Mezrag, F., Mohamed, W.K., Bouarissa, N. 2010. The effect of zinc concentration upon optical and dielectric properties of Cd1-xZnxSe. Physica B 405, 2272-2276.
  • Morales, J., Sánchez, L., Martín, F., Ramos-Barrado, J.R., Sánchez, M. 2005. Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films 474 (1-2), 133-140.
  • Nair, M.T.S., Guerrero, L., Arenas, O.L., Nair, P.K. 1999. Chemically deposited copper oxide thin films: structural, optical and electrical characteristics. Applied Surface Science 150 (1-4), 143-151.
  • Nayan, N., Sahdan, M.Z., Wei, L.J., Ahmad, M.K., Lias, J., Fhong, S.C., Md Shakaff, A.Y., Zakaria, A., Zain, A.F.M. 2016. Correlation between microstructure of copper oxide thin films and its gas sensing performance at room temperature. Procedia Chemistry 20, 45-51.
  • Pathan, H.M., Lokhande, C.D. 2004. Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bulletin of Materials Science 27, 85-111.
  • Roblesa, V., Trigoa, J.F., Guilléna, C., Herrero, J. 2014. Co-evaporated Tin Sulfide thin films on bare and Mo-coated glass substrates as photovoltaic absorber layers. Energy Procedia 44, 96-104.
  • Samarasekara, P., Kumara, N.T.R.N., Yapa, N.U.S. 2006. Sputtered copper oxide (CuO) thin films for gas sensor devices. Journal of Physics: Condensed Matter 18 (8), 2417-2420.
  • Shabu, R., Raj, A.M.E., Sanjeeviraja, C., Ravidhas, C. 2015. Assessment of CuO thin films for its suitability as window absorbing layer in solar cell fabrications. Materials Research Bulletin 68, 1-8.
  • Shinde, V.R., Gujar, T.P., Lokhande, C.D., Mane, R.S., Han, S.H. 2006. Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study. Materials Chemistry and Physics 96, 326-330.
  • Sun, S., Zhang, X., Sun, Y., Yang, S., Song, X., Yang, Z. 2013. Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor. Physical Chemistry Chemical Physics 15, 10904-10913.
  • Yıldırım, M.A., Ateş, A. 2010. Influence of films thickness and structure on the photo-response of ZnO films. Optics Communications 283, 1370-1377.
  • Yu, X., Marks, T.J., Facchetti, A. 2016. Metal oxides for optoelectronic applications. Nature Materials 15, 383-396.
  • Zhang, H., Yang, D., Ma, X., Du, N., Wu, J., Que, D. 2006. Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence. Journal of Physical Chemistry B 110, 827-830.
Birincil Dil en
Konular Mühendislik
Dergi Bölümü Makaleler
Yazarlar

Orcid: 0000-0002-7215-651X
Yazar: Halit Çavuşoğlu (Sorumlu Yazar)
Kurum: SELÇUK ÜNİVERSİTESİ
Ülke: Turkey


Bibtex @araştırma makalesi { ejosat417941, journal = {Avrupa Bilim ve Teknoloji Dergisi}, issn = {}, eissn = {2148-2683}, address = {Osman Sağdıç}, year = {2018}, volume = {}, pages = {124 - 128}, doi = {10.31590/ejosat.417941}, title = {Band-gap Control of Nanostructured CuO Thin Films using PEG as a Surfactant}, key = {cite}, author = {Çavuşoğlu, Halit} }
APA Çavuşoğlu, H . (2018). Band-gap Control of Nanostructured CuO Thin Films using PEG as a Surfactant. Avrupa Bilim ve Teknoloji Dergisi, (13), 124-128. DOI: 10.31590/ejosat.417941
MLA Çavuşoğlu, H . "Band-gap Control of Nanostructured CuO Thin Films using PEG as a Surfactant". Avrupa Bilim ve Teknoloji Dergisi (2018): 124-128 <http://dergipark.gov.tr/ejosat/issue/38980/417941>
Chicago Çavuşoğlu, H . "Band-gap Control of Nanostructured CuO Thin Films using PEG as a Surfactant". Avrupa Bilim ve Teknoloji Dergisi (2018): 124-128
RIS TY - JOUR T1 - Band-gap Control of Nanostructured CuO Thin Films using PEG as a Surfactant AU - Halit Çavuşoğlu Y1 - 2018 PY - 2018 N1 - doi: 10.31590/ejosat.417941 DO - 10.31590/ejosat.417941 T2 - Avrupa Bilim ve Teknoloji Dergisi JF - Journal JO - JOR SP - 124 EP - 128 VL - IS - 13 SN - -2148-2683 M3 - doi: 10.31590/ejosat.417941 UR - http://dx.doi.org/10.31590/ejosat.417941 Y2 - 2018 ER -
EndNote %0 Avrupa Bilim ve Teknoloji Dergisi Band-gap Control of Nanostructured CuO Thin Films using PEG as a Surfactant %A Halit Çavuşoğlu %T Band-gap Control of Nanostructured CuO Thin Films using PEG as a Surfactant %D 2018 %J Avrupa Bilim ve Teknoloji Dergisi %P -2148-2683 %V %N 13 %R doi: 10.31590/ejosat.417941 %U 10.31590/ejosat.417941
ISNAD Çavuşoğlu, Halit . "Nanoyapılı CuO İnce Filmlerin Bant Aralığının PEG Yüzey Aktif Maddesi Kullanılarak Kontrol Edilmesi". Avrupa Bilim ve Teknoloji Dergisi / 13 (Ağustos 2018): 124-128. http://dx.doi.org/10.31590/ejosat.417941