Yıl 2018, Cilt , Sayı 13, Sayfalar 98 - 102 2018-08-31

Yüksek Sıcaklıkta Uygulamalar için Kükürde Dayanıklı Perovskit Elektrokatalizörler
Sulfur Resistant Perovskite Electrocatalysts for High Temperature Applications

Sema Z. Baykara [1]

24 20

    Temiz ve karbon negatif enerji sistemlerinde katalitik operasyonların yaygınlaşmasıyla birlikte katalizör ve elektrokatalizörlerin geliştirilmesi de önem kazanmış olup, kimyasal ve ısıl açıdan dayanıklı karışık oksitlere (perovskitler) karşı ilgi artışı sürmektedir.  Bu çalışmada, temiz ve karbon negatif yaklaşımla hidrojen ve elektrik üretiminde kullanılmak üzere geliştirilmiş olan Co, Cr, La, Mo, Sr ve V içeren, genellikle ABO3 ve AxA(1-x)ByB(1-y)O3 yapısındaki bazı katalizör/elektrokatalizör perovskit maddeler elektriksel iletkenlik açısından 1100 K’e kadar artan sıcaklıkta incelenmiş, bunlar arasından La0.9Sr0.1Cr0.5V0.5O3, LaSr0.5V0.5O3 ve La0.9Sr0.1Cr0.75Co0.25O3 bileşiklerinin daha iletken oldukları anlaşılmıştır.  

Owing to increasing demand for catalytic operations in clean and carbon negative energy systems, development of catalysts and electrocatalysts has been gaining importance and interest has been growing in mixed oxides (perovskites) that are known for their chemical and thermal stability. In the present work, some perovskite catalysts/electrocatalysts, mostly with structures ABO3 and AxA(1-x)ByB(1-y)O3 containing Co, Cr, La, Mo, Sr and V have been developed and studied in terms of electrical conductivity at increasing temperatures up to 1100 K.  Among the samples, La0.9Sr0.1Cr0.5V0.5O3, LaSr0.5V0.5O3 and La0.9Sr0.1Cr0.75Co0.25O3 had relatively higher conductivity.

  • Afshar MR, Yan N, Zahiri B, Mitlin D, Chuang KT, Luo J. 2015. Impregnation of La0.4Ce0.6O1.8–La0.4Sr0.6TiO3 as solid oxide fuel cell anode in H2S-containing fuels. Journal of Power Sources 274, 211-218.
  • Athanassiou C, Pekridis G, Naklidis N, Kalimeri K, Vartzoka S, Marnellos G. 2007. Hydrogen production in solid electrolyte membrane reactors (SEMRs). International Journal of Hydrogen Energy 32, 38-54.
  • Baykara SZ. 2005. Hydrogen as fuel: a critical technology? International Journal of Hydrogen Energy 30(5), 545-553.
  • Baykara, S.Z. 2018. “Hydrogen: A brief overview on its sources, production and environmental impact”. International Journal of Hydrogen Energy 43, 10605-10614.
  • Coa T, Huang K, Shi Y, Cai N. 2017. Recent advances in high-temperature carbon-air fuel cells. Energy Environ Science 10, 460-490.
  • Evcin A, Çiçek Bezir N, Kayalı R, Arı M, Kepekçi DB. 2014. Indium phosphide nanofibers prepared by electrospinning method: Synthesis and characterization. Crystal Research and Technology 49(5), 303-308.
  • Fabbri E., Bi L, Pergolesi D, Traversa E. 2012. Towards the next generation of solid oxide fuel cells operating below 600 C with chemically stable proton-conducting electrolytes. Advanced Materials 24, 195-208.
  • Fabrri E., Pergolesi D, Traversa E. 2010. Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chemical Society Reviews 39, 4355-4369.
  • Figueres C., Schellnhuber HJ, Whiteman G, Rockström J, Hobley A, Rahmstorf S. 2017. Three years to safeguard our climate. Nature 546, 593-595.
  • Gao Z, Mogni LV, Miller EC, Railsback JG, Barnett SA. 2016. A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science 9, 1602-1644.
  • Giddey, S, Badwal SPS; Kulkarni A, Munnings C. 2012. A comprehensive review of direct carbon fuel cell technology. Progress in Energy and Combustion Science 38(3), 360-399.
  • Gong M, Liu X, Trembly J, Johnson J. 2007. Sulfur-tolerant anode materials for solid oxide cell application. Journal of Power Sources 168, 289-298.
  • Guldal NO, Figen HE, Baykara SZ. 2017. Production of hydrogen from hydrogen sulfide with perovskite type catalysts: LaMO3. Chemical Engineering Journal 313, 1354-1363.
  • Guldal NO, Figen HE, Baykara SZ. 2015. New catalysts for hydrogen production from H2S: preliminary results. International Journal of Hydrogen Energy 40(24), 7452-7458.
  • Guldal NO, Figen HE, Baykara SZ. 2018. Perovskite catalysts for hydrogen production from hydrogen sulfide. International Journal of Hydrogen Energy 43(2), 1038-1046.
  • Gur TM. 2013. Critical review of carbon conversion in “carbon fuell cells”. Chemical Reviews 113, 6179-6206.
  • International Energy Agency (IEA), Key world energy statistics. Technical Report 2017. http://www.iea.org/publications/freepublications /publication/ keyworld 2017_FINAL_WEB. pdf.
  • Ipsakis D, Kraia TZ, Marnellos G, Ouzounidou M, Voutdetakis SS, Dittmeyer R, Dubbe A, Haas-Santo K, Konsolakis M, Figen HE, Guldal NO, Baykara SZ. 2015. An electrocatalytic membrane-assisted process for hydrogen production from H2S in Black Sea: preliminary results, International Journal of Hydrogen Energy 40(24), 7530-7538.
  • Jiang S.P., Liu L., Ong K.P., Wu P., Li J., Pu J. 2008. Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells, Journal of Power Sources 176, 82-89.
  • Kraia, T., Wachowski, S., Vøllestad, E., Strandbakke, R., Konsolakis, M., Norby, T., Marnellos, G.E. 2017. Electrochemical performance of Co3O4/CeO2 electrodes in H2S/H2O atmospheres in a proton-conducting ceramic symmetrical cell with BaZr0.7Ce0.2Y0.1O3 solid electrolyte. Solid State Ionics 306, 31-37.
  • Li JH, Fu XZ, Luo JL, Chuang KT, Sanger AR. 2012. Application of BaTiO3 as anode materials for H2S-containing CH4 fueled solid oxide fuel cells. Journal of Power Sources 213, 69-77.
  • Mori M, Yamamoto T., Itoh H., Watanabe T. 1997. Compatibility of alkaline earth metal (Mg, Ca, Sr)-doped lanthanum chromites as separators in planar-type high-temperature solid oxide fuel cells. Journal of Material Science 32, 2423-2431.
  • Newton-Cross G. and Gammer D. 2016. The evidence for deploying bioenergy with CCS (BECCS) in the UK, Bioenergy Programme Insight Report. Energy Technologies Institute, Loughborough, UK.
  • Petrov K, Baykara SZ, Ebrasu D, Gulin M, Veziroglu A. 2011. An assessment of electrolytic hydrogen production from H2S in Black Sea waters. International Journal of Hydrogen Energy 36(15), 8936-8942.
  • Tejuca LG, Fierro JS, Tascon JMD. 1989. Structure and Reactivity of Perovskite-Type Oxides. Advances in Catalysis, 36, 237-328.
  • Thraen D., Witt J., Schaubach K., Kiel J., Carbo M., Maier J., Ndibe C., Koppejan J., Alakangas E., Majer S. and Schipfer F. 2016. Moving torrefaction towards market introduction-Technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project. Biomass and Bioenergy 89, 184-200.
  • Uzun, D., Razkazova-Velkova, E., Petrov, K., Beschkov, V. 2015. Electrochemical method for energy production from hydrogen sulfide in the Black sea waters in sulfide-driven fuel cell. Bulgarian Chemical Communications 47(3), 859-866.
  • Uzun, D., Razkazova–Velkova, E., Petrov, K., Beschkov, V. 2016. H2S/O2 fuel cells using hydrogen sulfide from Black Sea waters. Journal of Applied Electrochemistry 46(9), 943-949.
  • Veziroglu TN, Gurkan I, Padki MM. 1989. Remediation of greenhouse problem through replacement of fossil fuels by hydrogen. International Journal of Hydrogen Energy 14(4), 256-266.
  • Vincent AL, Luo J, Chuang KT, Sanger AR., 2011. Promotion of activation of CH4 by H2S in oxidation of sour gas over sulfur tolerant SOFC anode catalysts. Applied Catalysis B: Environmental 106(1-2), 114-122.
  • Wachowski S, Li Z., Polfus JM, Norby T. 2018. Performance and stability in H2S of SrFe0.75Mo0.25O3-δ as electrode in proton ceramic fuel cells. Journal of The European Ceramic Society 38, 163-171.
  • Wachsman E.D., Lee K.T. 2011. Lowering the temperature of solid oxide fuel cells. Science 334, 935-939.
  • Zha S., Tsang P., Cheng Z., Liu M., 2005. Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1-xMnxO3 under anodic conditions. Journal of Solid State Chemistry 178, 1844-1850.
Birincil Dil en
Konular Mühendislik ve Temel Bilimler
Dergi Bölümü Makaleler
Yazarlar

Orcid: 0000-0002-4607-9215
Yazar: Sema Z. Baykara (Sorumlu Yazar)
Kurum: YILDIZ TECHNICAL UNIVERSITY
Ülke: Turkey


Bibtex @araştırma makalesi { ejosat452123, journal = {Avrupa Bilim ve Teknoloji Dergisi}, issn = {}, eissn = {2148-2683}, address = {Osman Sağdıç}, year = {2018}, volume = {}, pages = {98 - 102}, doi = {10.31590/ejosat.452123}, title = {Sulfur Resistant Perovskite Electrocatalysts for High Temperature Applications}, key = {cite}, author = {Baykara, Sema Z.} }
APA Baykara, S . (2018). Sulfur Resistant Perovskite Electrocatalysts for High Temperature Applications. Avrupa Bilim ve Teknoloji Dergisi, (13), 98-102. DOI: 10.31590/ejosat.452123
MLA Baykara, S . "Sulfur Resistant Perovskite Electrocatalysts for High Temperature Applications". Avrupa Bilim ve Teknoloji Dergisi (2018): 98-102 <http://dergipark.gov.tr/ejosat/issue/38980/452123>
Chicago Baykara, S . "Sulfur Resistant Perovskite Electrocatalysts for High Temperature Applications". Avrupa Bilim ve Teknoloji Dergisi (2018): 98-102
RIS TY - JOUR T1 - Sulfur Resistant Perovskite Electrocatalysts for High Temperature Applications AU - Sema Z. Baykara Y1 - 2018 PY - 2018 N1 - doi: 10.31590/ejosat.452123 DO - 10.31590/ejosat.452123 T2 - Avrupa Bilim ve Teknoloji Dergisi JF - Journal JO - JOR SP - 98 EP - 102 VL - IS - 13 SN - -2148-2683 M3 - doi: 10.31590/ejosat.452123 UR - http://dx.doi.org/10.31590/ejosat.452123 Y2 - 2018 ER -
EndNote %0 Avrupa Bilim ve Teknoloji Dergisi Sulfur Resistant Perovskite Electrocatalysts for High Temperature Applications %A Sema Z. Baykara %T Sulfur Resistant Perovskite Electrocatalysts for High Temperature Applications %D 2018 %J Avrupa Bilim ve Teknoloji Dergisi %P -2148-2683 %V %N 13 %R doi: 10.31590/ejosat.452123 %U 10.31590/ejosat.452123
ISNAD Baykara, Sema Z. . "Yüksek Sıcaklıkta Uygulamalar için Kükürde Dayanıklı Perovskit Elektrokatalizörler". Avrupa Bilim ve Teknoloji Dergisi / 13 (Ağustos 2018): 98-102. http://dx.doi.org/10.31590/ejosat.452123