Year 2019, Volume , Issue 15, Pages 132 - 142 2019-03-31

Farkli Uçuş Durumlari Için Quadcopter Dinamik Modeli ve Simulasyonu
Dynamic Modeling and Simulation of Quadcopter for Several Flight Conditions

Tuğrul Oktay [1] , Oğuz Köse [2]

29 80

Bu çalışmada dört rotorlu bir insansız hava aracının modellenmesi yapılmış, kontrol sistemi tasarlanmış ve performans değerlendirmeleri yapılmıştır. Kontrol sistemi için hava aracının boylamasına, yanlamasına ve dikey kalkış, iniş harekelerinin ayrı ayrı matematiksel modeli çıkarılmış ve durum uzay modeli şeklinde ifade edilmiştir. Hava aracına uçuş esnasında etki edecek rüzgâr bozulmalarının da matematiksel modeli oluşturulmuş ve durum uzay modeline eklenmiştir. Kontrolcü olarak ise Proportional Integral Derivative (PID) kontrol algoritması kullanılmıştır. İnsansız hava aracının modellenmesi Solidworks programında, simülasyonlar ise Matlab/Simulink programında yapılmıştır. Bu çalışma quadcopter modellenmesi ve kontrolü üzerine nadir kaynaklardan biridir. Bu çalışmanın bundan sonraki kısmında quadcopter yada quadrotor terimi yerine kendi tasarımımız olan Zankacopter ismi kullanılacaktır.

In this paper, a four-rotor unmanned aerial vehicle was modeled, a control system was designed and performance evaluations were made. For the control system, a separate mathematical model of the unmanned aerial vehicle longitudinal, lateral and vertical take-off and landing operations is omitted and is expressed as a state space model. The mathematical model of the wind disturbances that will affect the unmanned aerial vehicle during the flight was created and the situation was added to the space model. Proportional Integral Derivative (PID) control algorithm was used as the control. Unmanned aerial vehicle modeling was done in Solidworks and simulations were done in Matlab / Simulink program. This paper is one of rare studies that source on quadcopter modeling and control. In the next part of this study, Zankacopter name will be used instead of quadcopter or quadrotor. 

  • H. ÇELİK, T. OKTAY, and İ. TÜRKMEN, "İNSANSIZ KÜÇÜK BİR HAVA ARACININ (ZANKA-I) FARKLI TÜRBÜLANS ORTAMLARINDA MODEL ÖNGÖRÜLÜ KONTROLÜ VE GÜRBÜZLÜK TESTİ," Journal of Aeronautics & Space Technologies/Havacilik ve Uzay Teknolojileri Dergisi, vol. 9, 2016.
  • R. Austin, Unmanned aircraft systems: UAVS design, development and deployment vol. 54: John Wiley & Sons, 2011.
  • G. Hoffmann, D. G. Rajnarayan, S. L. Waslander, D. Dostal, J. S. Jang, and C. J. Tomlin, "The Stanford testbed of autonomous rotorcraft for multi agent control (STARMAC)," in Digital Avionics Systems Conference, 2004. DASC 04. The 23rd, 2004, pp. 12. E. 4-121.
  • J. P. How, B. BEHIHKE, A. Frank, D. Dale, and J. Vian, "Real-time indoor autonomous vehicle test environment," IEEE control systems, vol. 28, pp. 51-64, 2008.
  • F. Šolc, "Modelling and Control of a Quadrocopter," Advanced in Military Technology, vol. 1, pp. 29-38, 2007.
  • M. Prabha, R. Thottungal, and S. Kaliappan, "Modeling and Simulation of X-Zankacopter Control," International Journal for Research in Applied Science & Engineering Technology (IJRASET).[online] Available at: http://www. ijraset. com/fileserve. php, 2016.
  • J. Wang, S. Xin, and Y. Zhang, "Modeling and Control of a Zankacopter Vehicle Subject to Disturbance Load," 2017.
  • G. Ononiwu, O. Onojo, O. Ozioko, and O. Nosiri, "Zankacopter Design for Payload Delivery," Journal of Computer and Communications, vol. 4, pp. 1-12, 2016.
  • S. C. Quebe, "Modeling, Parameter Estimation, and Navigation of Indoor Zankacopter Robots," 2013.
  • J. Li and Y. Li, "Dynamic analysis and PID control for a zankacopter," in Mechatronics and Automation (ICMA), 2011 International Conference on, 2011, pp. 573-578.
  • A. Alkamachi and E. Erçelebi, "Modelling and genetic algorithm based-PID control of H-shaped racing zankacopter," Arabian Journal for Science and Engineering, vol. 42, pp. 2777-2786, 2017.
  • M. Silva, A. Ribeiro, M. Santos, M. Carmo, L. Honório, E. Oliveira, et al., "Design of angular pid controllers for zankacopters built with low cost equipment," in System Theory, Control and Computing (ICSTCC), 2016 20th International Conference on, 2016, pp. 216-221.
  • J. T. Jang, S. T. Moon, S. Han, H. C. Gong, G.-H. Choi, I. H. Hwang, et al., "Trajectory generation with piecewise constant acceleration and tracking control of a zankacopter," in Industrial Technology (ICIT), 2015 IEEE International Conference on, 2015, pp. 530-535.
  • A. Das, F. Lewis, and K. Subbarao, "Backstepping approach for controlling a zankacopter using lagrange form dynamics," Journal of Intelligent and Robotic Systems, vol. 56, pp. 127-151, 2009.
  • Y. Naidoo, R. Stopforth, and G. Bright, "Quad-Rotor unmanned aerial vehicle helicopter modelling & control," International Journal of Advanced Robotic Systems, vol. 8, p. 45, 2011.
  • H. Bolandi, M. Rezaei, R. Mohsenipour, H. Nemati, and S. M. Smailzadeh, "Attitude control of a zankacopter with optimized PID controller," Intelligent Control and Automation, vol. 4, p. 335, 2013.
  • B. Kada and Y. Ghazzawi, "Robust PID controller design for an UAV flight control system," in Proceedings of the World Congress on Engineering and Computer Science, 2011.
  • V. Praveen and S. Pillai, "A.,“Modeling and simulation of zankacopter using PID controller”," International Journal of Control Theory and Applications, vol. 9, pp. 7151-7158, 2016.
  • Z. Benić, P. Piljek, and D. Kotarski, "Mathematical modelling of unmanned aerial vehicles with four rotors," Interdisciplinary Description of Complex Systems, vol. 14, pp. 88-100, 2016.
  • F. Sabatino, "Zankacopter control: modeling, nonlinearcontrol design, and simulation," ed, 2015.
  • A. Marks, J. F. Whidborne, and I. Yamamoto, "Control allocation for fault tolerant control of a VTOL octorotor," in Control (CONTROL), 2012 UKACC International Conference on, 2012, pp. 357-362.
  • S. Bouabdallah, P. Murrieri, and R. Siegwart, "Design and control of an indoor micro zankacopter," in Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE International Conference on, 2004, pp. 4393-4398.
  • G. Staples, "Propeller Static & Dynamic Thrust Calculation," ed, 2015.
  • T. Bresciani, "Modelling, identification and control of a zankacopter helicopter," MSc Theses, 2008.
  • T. Tengis and A. Batmunkh, "State feedback control simulation of zankacopter model," in Strategic Technology (IFOST), 2016 11th International Forum on, 2016, pp. 553-557.
  • T. Oktay and F. Sal, "Combined passive and active helicopter main rotor morphing for helicopter energy save," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 38, pp. 1511-1525, 2016.
  • P. Akyol, "Dısturbance rejectıon and attıtude control of zankacopter wıth log," Başkent Üniversitesi Fen Bilimleri Enstitüsü, 2017.
  • B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft control and simulation: dynamics, controls design, and autonomous systems: John Wiley & Sons, 2015.
  • K. O. Oktay T., "Optimal Tunning of PID Controller For Forward Flight of Research Based Zankacopter," 2. Uluslararası Multidisipliner Çalışmaları Kongresi, ADANA, TÜRKIYE, 2018.
  • K. O. Oktay T., "Optimal Tunning of PID Controller For Lateral Flight of Research Based Zankacopter," presented at the 4. Uluslararası Mesleki ve Teknik Bilimler Kongresi (UMTEB), Erzurum, 2018.
  • K. Alexis, G. Nikolakopoulos, and A. Tzes, "Constrained-control of a zankacopter helicopter for trajectory tracking under wind-gust disturbances," in MELECON 2010-2010 15th IEEE Mediterranean Electrotechnical Conference, 2010, pp. 1411-1416.
  • E. Klavins, C. Matlack, J. Palm, A. Nelson, and A. Bradford, "Quad-Rotor UAV project," 2010.
  • T. Oktay and S. Coban, "Simultaneous Longitudinal and Lateral Flight Control Systems Design for Both Passive and Active Morphing TUAVs," Elektronika ir Elektrotechnika, vol. 23, pp. 15-20, 2017.
Primary Language en
Subjects Engineering
Journal Section Makaleler
Authors

Orcid: 0000-0003-4860-2230
Author: Tuğrul Oktay
Institution: ERCİYES ÜNİVERSİTESİ, HAVACILIK VE UZAY BİLİMLERİ FAKÜLTESİ
Country: Turkey


Orcid: 0000-0002-8069-8749
Author: Oğuz Köse (Primary Author)
Institution: GÜMÜŞHANE ÜNİVERSİTESİ, KELKİT AYDIN DOĞAN MESLEK YÜKSEKOKULU
Country: Turkey


Bibtex @research article { ejosat507222, journal = {Avrupa Bilim ve Teknoloji Dergisi}, issn = {}, eissn = {2148-2683}, address = {Osman Sağdıç}, year = {2019}, volume = {}, pages = {132 - 142}, doi = {10.31590/ejosat.507222}, title = {Dynamic Modeling and Simulation of Quadcopter for Several Flight Conditions}, key = {cite}, author = {Oktay, Tuğrul and Köse, Oğuz} }
APA Oktay, T , Köse, O . (2019). Dynamic Modeling and Simulation of Quadcopter for Several Flight Conditions. Avrupa Bilim ve Teknoloji Dergisi, (15), 132-142. DOI: 10.31590/ejosat.507222
MLA Oktay, T , Köse, O . "Dynamic Modeling and Simulation of Quadcopter for Several Flight Conditions". Avrupa Bilim ve Teknoloji Dergisi (2019): 132-142 <http://dergipark.gov.tr/ejosat/issue/43603/507222>
Chicago Oktay, T , Köse, O . "Dynamic Modeling and Simulation of Quadcopter for Several Flight Conditions". Avrupa Bilim ve Teknoloji Dergisi (2019): 132-142
RIS TY - JOUR T1 - Dynamic Modeling and Simulation of Quadcopter for Several Flight Conditions AU - Tuğrul Oktay , Oğuz Köse Y1 - 2019 PY - 2019 N1 - doi: 10.31590/ejosat.507222 DO - 10.31590/ejosat.507222 T2 - Avrupa Bilim ve Teknoloji Dergisi JF - Journal JO - JOR SP - 132 EP - 142 VL - IS - 15 SN - -2148-2683 M3 - doi: 10.31590/ejosat.507222 UR - https://doi.org/10.31590/ejosat.507222 Y2 - 2019 ER -
EndNote %0 European Journal of Science and Technology Dynamic Modeling and Simulation of Quadcopter for Several Flight Conditions %A Tuğrul Oktay , Oğuz Köse %T Dynamic Modeling and Simulation of Quadcopter for Several Flight Conditions %D 2019 %J Avrupa Bilim ve Teknoloji Dergisi %P -2148-2683 %V %N 15 %R doi: 10.31590/ejosat.507222 %U 10.31590/ejosat.507222
ISNAD Oktay, Tuğrul , Köse, Oğuz . "Dynamic Modeling and Simulation of Quadcopter for Several Flight Conditions". Avrupa Bilim ve Teknoloji Dergisi / 15 (March 2019): 132-142. https://doi.org/10.31590/ejosat.507222